[1]刘春香,黄紫乐,谭博文,等.湖南东江湖水库消落带地形因子与水文要素时空格局变化[J].山地学报,2023,(5):676-688.[doi:10.16089/j.cnki.1008-2786.000779]
 LIU Chunxiang,HUANG Ziyue,TAN Bowen,et al.Spatiotemporal Changes in Topographic and Hydrological Factors in Hydro-Fluctuation Belt in the Dongjiang Lake of Hunan Province, China[J].Mountain Research,2023,(5):676-688.[doi:10.16089/j.cnki.1008-2786.000779]
点击复制

湖南东江湖水库消落带地形因子与水文要素时空格局变化
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第5期
页码:
676-688
栏目:
山地环境
出版日期:
2023-11-15

文章信息/Info

Title:
Spatiotemporal Changes in Topographic and Hydrological Factors in Hydro-Fluctuation Belt in the Dongjiang Lake of Hunan Province, China
文章编号:
1008-2786-(2023)5-676-13
作者:
刘春香 黄紫乐 谭博文 李有志*
(湖南农业大学 环境与生态学院,长沙 410128)
Author(s):
LIU Chunxiang HUANG Ziyue TAN Bowen LI Youzhi*
(College of Environment and Ecology, Hunan Agricultural University, Changsha 410128)
关键词:
DEM 坡度 淹水深度 淹水天数 植被修复
Keywords:
DEM slope flooding depth flooding days vegetation restoration
分类号:
Q149
DOI:
10.16089/j.cnki.1008-2786.000779
文献标志码:
A1
摘要:
东江湖消落带岸坡侵蚀、水土流失严重,生态风险堪忧,生态修复刻不容缓。地形因子和水文要素作为湖库消落带修复最为关键的约束性条件,反映了库岸生态系统的基本状态。本研究基于东江湖流域DEM(Digital Elevation Model)数据和水文站2017—2021年的日水位数据,利用ArcGIS提取消落带范围,分析地形因子和水文要素时空格局变化。结果表明:(1)东江湖消落带位于263~278 m高程区间,垂直落差15 m,总面积25.16 km2。消落带高程和坡度均呈现南北高、中间低的特点,即高高程和陡坡区段主要位于滁口镇和黄草镇等地区,而低高程和缓坡主要位于白廊镇和小东江等地区; 消落带无坡向分布广泛,呈现出阴坡面积多于阳坡的特点,而长坡主要位于北部,短坡主要位于南部; 消落带剖面曲率和平面曲率在空间上呈现相同的变化趋势,即在南北两端较低,在中部较高。(2)东江湖消落带地形因子和水文要素呈现出明显的空间异质性。东江湖消落带全年淹水天数、最低持续淹水天数、平均持续淹水天数、最大淹水深度、平均淹水深度等水文要素均随高程的增加而下降,呈现出显著负相关关系。(3)白廊镇、坪石乡、兴宁镇和小东江应为消落带综合治理的重点区域,滁口镇和黄草镇等为综合治理的难点区域。消落带263~266 m高程段属于常年淹水区域,不适宜植被存活; 266~278 m高程段属于偶然淹水区,适宜开展一定植被修复。研究结果可为东江湖消落带的植物群落构建、生态修复与综合治理供科学依据。
Abstract:
Ecological restoration of the hydro-fluctuation belt in the Dongjiang Lake is important because of the increasing risk of riverbank erosion and water-soil loss. As the most critical factors for the restoration of the hydro-fluctuation belt of lakes and reservoirs, topographic and hydrological factors best describe the basic state of such an ecosystem.
In this study, digital elevation model(DEM)data of the Dongjiang Lake Basin and daily water level data(2017-2022)from hydrological stations were collected. The range of the hydro-fluctuation belt was extracted using ArcGIS, and then the changes in spatiotemporal pattern of the topographic and hydrological factors in the hydro-fluctuation belt were analyzed.
The study produced the following findings.(1)The hydro-fluctuation belt in the Dongjiang Lake was located at an elevation of 263-278 m, a vertical elevation difference of 15 m, and had a total area of 25.16 km2. The elevations and slopes in the belt had the highest values in the northern and southern areas(e.g., Chukou Town, Huangcao Town)and the lowest in the middle area(e.g., Bailang Town, Xiaodongjiang). The non-slope aspect in the belt was widely distributed, and the area of shady slope exceeded that of sunny slope. Long and short slopes were mainly located in the northern and southern areas of the belt, respectively. The profile curvature and plane curvature in the belt showed the same change trend in spatial distribution, exhibiting low values in the northern and southern belts and high values in the middle belt.(2)The topographic and hydrological factors in the hydro-fluctuation belt in the Dongjiang Lake were spatially heterogeneous. The annual, minimum continuous, and average continuous flooding days as well as the maximum and average flooding depths in the hydro-fluctuation belt showed significant negative correlations with elevation.(3)It should be considered for comprehensive control of the hydro-fluctuation belt at Bailang Town, Xingning Town, Pingshi Town, and Xiaodongjiang. Comprehensive control will be difficult in Chukou Town and Huangcao Town. The section Lof the belt at elevation ranging from 263 to 266 m was a perennial flooding area and was not suitable for habitat of vegetation, and that ranging from 266 to 278 m was an accidental flooding area that was suitable for some vegetation restoration.
This study provides a scientific basis for plant community establishment, ecological restoration, and comprehensive management of the hydro-fluctuation belt in the Dongjiang Lake.

参考文献/References:

[1] GONZALEZ E, FELIPE-LUCIA M R, BOURGEOIS B, et al. Integrative conservation of riparian zones [J]. Biological Conservation, 2017, 211: 20-29. DOI: 10.1016/j.biocon.2016.10.035
[2] BETZ F, LAUERMANN M, CYFFKA B. Delineation of the riparian zone in data-scarce regions using fuzzy membership functions: An evaluation based on the case of the Naryn River in Kyrgyzstan [J]. Geomorphology, 2018, 306: 170-181. DOI: 10.1016/j.geomorph.2018.01.024
[3] 王正, 肖丽微, 谭秋霞, 等. 三峡水库消落带优势草本植物对土壤氮磷的吸收富集特征[J]. 山地学报, 2019, 37(2): 151-160. [WANG Zheng, XIAO Liwei, TAN Qiuxia, et al. Nitrogen and Phosphorus absorption from soil by the dominant herbaceous species in the water-level-fluctuation zone of the Three Gorges Reservoir [J]. Mountain Research, 2019, 37(2): 151-160] DOI: 10.16089/j.cnki.1008-2786.000409
[4] 李卓凌, 王冬梅, 任远. 漓江水陆交错带截污效果评价[J]. 生态学报, 2018, 38(21): 7618-7628. [LI Zhuoling, WANG Dongmei, REN Yuan. Assessment of the interception effect of Lijiang River land and water ecotone [J]. Acta Ecologica Sinica, 2018, 38(21): 7618-7628] DOI: 10.5846/stxb201710141842
[5] LEE J M, GAN J Y, YULE C M. The ecology of littoral zone Chironomidae in four artificial, urban, tropical Malaysian lakes [J]. Urban Ecosystems, 2019, 22(1): 149-159. DOI: 10.1007/s11252-018-0802-6
[6] 吕明权, 吴胜军, 陈春娣, 等. 三峡消落带生态系统研究文献计量分析[J]. 生态学报, 2015, 35(11): 3504-3518. [LYU Mingquan, WU Shengjun, CHEN Chundi, et al. A review of studies on water level fluctuating zone(WLFZ)of the Three Gorges Reservoir(TGR)based on bibliometric perspective [J]. Acta Ecologica Sinica, 2015, 35(11): 3504-3518] DOI: 10.5846/stxb201309252366
[7] NOBREGA R L B, ZIEMBOWICZ T, TORRES G N, et al. Ecosystem services of a functionally diverse riparian zone in the Amazon-Cerrado agricultural frontier [J]. Global Ecology and Conservation, 2020, 21: e00819. DOI: 10.1016/j.gecco.2019.e00819
[8] CHEN Fangxin, LU Shaoyong, HU Xiaozhen, et al. Multi-dimensional habitat vegetation restoration mode for lake riparian zone, Taihu, China [J]. Ecological Engineering, 2019, 134: 56-64. DOI: 10.1016/j.ecoleng.2019.05.002
[9] 窦文清, 贾伟涛, 张久红, 等. 三峡水库消落带植被现状、适生策略及生态修复研究进展[J]. 生态学杂志, 2023, 42(1): 208-218. [DOU Wengqing, JIA Weitao, ZHANG Jiuhong, et al. Research progress of vegetation status, adaptive strategies and ecological restoration in the water-level fluctuation zone of the Three Gorges Reservoir [J]. Chinese Journal of Ecology, 2023, 42(1): 208-218] DOI: 10.13292/j.1000-4890.202301.018
[10] 艾丽皎, 吴志能, 张银龙. 水体消落带国内外研究综述[J]. 生态科学, 2013, 32(2): 259-264. [AI Lijiao, WU Zheneng, ZHANG Yinlong. A summary of water-level-fluctuating zone [J]. Ecological Science, 2013, 32(2): 259-264] DOI: 10.3969/j.issn. 1008-8873.2013.02.021
[11] 王媛媛. 江津城区长江消落带护坡植被恢复工程植物多样性分析与恢复效果评价[D]. 重庆: 西南大学, 2022:1-8. [WANG Yuanyuan. Analysis of plant diversity and evaluation of restoration effect of slope revegetation project of Yangtze River fading zone in Jiangjin city [D]. Chongqing: Southwest University, 2022:1-8 ] DOI: 10.27684/d.cnki.gxndx.2022.004410
[12] 黄桂云, 蔡玉鹏, 张国禹, 等. 三峡库区消落带植被恢复技术及植物适宜性研究[J]. 水土保持应用技术, 2022(5): 1-3. [HUANG Guiyun, CAI Yupeng, ZHANG Guoyu, et al. Research on vegetation restoration technology and plant suitability in the Three Gorges Reservoir area [J]. Soil and Water Conservation Application Technology, 2022(5): 1-3] DOI: 10. 3969/j. issn. 1673-5366. 2022.05.01
[13] 钟荣华, 鲍玉海, 贺秀斌, 等. 水库消落带串珠式柔性护岸技术及其应用[J]. 世界科技研究与发展, 2015, 37(1): 1-4. [ZHONG Ronghua, BAO Yuhai, HE Xiubing, et al. Application of beaded and flexible technology to revetment in reservoir drawdown zone [J]. World Sci-Tech R&D, 2015, 37(1): 1-4] DOI: 10.16507/j.issn.1006-6055.2015.01.001
[14] 张顺. 西安城市绿地地形设计对生境营造中土壤因子影响研究[D]. 西安: 西安建筑科技大学, 2019: 12-25. [ZHANG Shun. The influence of topographic design of Xi'an urban green space on soil factors in habitat-site design [D]. Xi'an: Xi'an University of Architecture and Technology, 2019: 12-25] DOI: 10.27393/d.cnki.gxazu.2019.001743
[15] 李峰, 谢永宏, 陈心胜, 等. 三峡工程运行对洞庭湖湿地植被格局的影响及调控机制[J]. 农业现代化研究, 2018, 39(6): 937-944. [LI Feng, XIE Yonghong, CHEN Xinsheng, et al. Influence with its regulating mechanism of the Three Gorge Dam operation on plant distributing patterns in the Dongting Lake [J]. Research of Agricultural Modernization, 2018, 39(6): 937-944] DOI: 10.13872/j.1000-0275.2018.0085
[16] 谢永宏, 陈心胜. 三峡工程对洞庭湖湿地植被演替的影响[J]. 农业现代化研究, 2008, 29(6): 684-687. [XIE Yonghong, CHEN Xinsheng. Effects of Three-Gorge Project on succession of wetland vegetation in Dongting Lake [J]. Research of Agricultural Modernization, 2008, 29(6): 684-687]
[17] 唐敏, 杨春华, 雷波. 基于GIS的三峡水库不同坡度消落带分布特征[J]. 三峡环境与生态, 2013, 35(3): 8-10+20. [TANG Min, YANG Chunhua, LEI Bo. Spatial distribution investigation on the water-level-fluctuating zone slopes in Three Gorges Reservoir areas based on GIS [J]. Environment and Ecology in the Three Gorges, 2013, 35(3): 8-10+20] DOI: 10.14068/j.ceia.2013.03.002
[18] 刘仪航, 韩剑桥, 谢梦霞, 等. 基于GIS与AHP集成的黄土高原洪水灾害风险评估[J]. 水土保持研究, 2023, 30(2): 129-134. [LIU Yihang, HAN Jianqiao, XIE Mengxia, et al. Risk assessment of flood disaster on the Loess Plateau based on integration of GIS and AHP [J]. Research of Soil and Water Conservation, 2023, 30(2): 129-134] DOI: 10.13869/j.cnki.rswc.2023.02.002
[19] 雷波, 杨春华, 杨三明, 等. 基于GIS的长江三峡水库消落带生态类型划分及其特征[J]. 生态学杂志, 2012, 31(8): 2082-2090. [LEI Bo, YANG Chunhua, YANG Sanming, et al. GIS-based division of ecological types and their characteristics of water-level-fluctuating zone in the Three Gorges Reservoir of Yangtze River [J]. Chinese Journal of Ecology, 2012, 31(8): 2082-2090] DOI: 10.13292/j.1000-4890.2012.0254
[20] 江维薇, 李文涛, 肖衡林. 澜沧江流域糯扎渡水库消落带植被的物种组成、空间分布特征及地形解释[J]. 湖泊科学, 2022, 34(6): 2025-2038. [JIANG Weiwei, LI Wentao, XIAO Henglin. Species composition, spatial distribution characteristics and topographic attribution of vegetation in the water-level-fluctuating zone of the Nuozhadu Reservoir in the Lancang River Basin [J]. Journal of Lake Sciences, 2022, 34(6): 2025-2038] DOI: 10.18307/2022.0618
[21] 郭海荣, 焦文海, 杨元喜. 1985国家高程基准与全球似大地水准面之间的系统差及其分布规律[J]. 测绘学报, 2004, 33(2): 100-104. [GUO Hairong, JIAO Wenhai, YANG Yuanxi. The systematic difference and its distribution between the1985 national height datum and the global quasigeoid [J]. Acta Geodaetica et Cartographica Sinica. 2004, 33(2): 100-104]
[22] 赵保成, 李国忠, 徐坚, 等. 顾及似大地水准面趋势变化的高程异常拟合方法[J]. 北京测绘, 2022, 36(11): 1449-1454. [ZHAO Baocheng, LI Guozhong, XU Jian, et al. Fitting method of height anomaly considering variation of quasi-geoid [J]. Beijing Surveying and Mapping, 2022, 36(11): 1449-1454] DOI: 10.19580/j.cnki.1007-3000.2022.11.002
[23] 谢祖明. 福建三调耕地坡度分级数据提取方法研究[J]. 测绘与空间地理信息, 2022, 45(9): 95-98. [XIE Zuming. Study on the method of extracting cultivated land slope grading data from the Third Land Survey in Fujian province [J] Geomatics and Spatial Information Technology, 2022, 45(9): 95-98]
[24] 付建新, 曹广超, 郭文炯. 1998—2017年祁连山南坡不同海拔、坡度和坡向生长季NDVI变化及其与气象因子的关系[J]. 应用生态学报, 2020, 31(4): 1203-1212. [FU Jianxin, CAO Guangchao, GUO Wenjiong. Changes of growing season NDVI at different elevations, slopes, slope aspects and its relationship with meteorological factors in the southern slope of the Qilian Mountains, China from 1998 to 2017 [J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1203-1212] DOI: 10.13287/j.1001-9332.202004.018
[25] 李俊. 基于DEM的黄土高原坡长的自动提取和分析[D]. 西安: 西北大学, 2007:3-60. [LI Jun. Automatic extraction of slope length and analyst based on DEM in the Loess Plateau [D]. Xi'an: Northwest University, 2007: 3-60]
[26] 田宇. 基于ArcGIS的长白县滑坡易发性分区评价研究[D]. 长春: 吉林大学, 2020: 29-37. [TIAN Yu. ArcGIS-based spatial prediction of landslide susceptibility in Changbai county [D]. Changchun: Jilin University, 2020: 29-37]
[27] LI Youzhi, BIAN Hualin, REN Bo, et al. Morphological responses of two plant species from different elevations in the Dongting Lake wetlands, China, to variation in water levels [J]. Nordic Journal of Botany, 2019, 37: e01987. DOI: 10.1111/njb.01987
[28] 黄莹. 数学统计方法在东江湖环湖植被生态评价中的应用[J]. 湘南学院学报, 2020, 41(5): 28-33. [HUANG Ying. Application of mathematical statistical method in ecological evaluation of vegetation in the Dongjiang Lake [J]. Journal of Xiangnan University, 2020, 41(5): 28-33] DOI: 10.3969/j.issn.1672-8173.2020.05.007
[29] 刘伦.基于3S技术的澜沧江梯级水库消落带植被物种组成及其分布特征[D]. 武汉: 湖北工业大学. 2021: 3-27. [LIU Lun. Composition and distribution of vegetation in the water level fluctuating zone of the Lantsang cascade reservoir based on 3S technology [D]. Wuhan: Hubei University of Technology, 2021: 3-27]
[30] 祁建, 马克明, 张育新. 辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释[J]. 生态学报, 2007, 27(3): 930-937. [QI Jian, MA Keming, ZHANG Yuxin. The altitudinal variation of leaf traits of Quercus liaotungensis and associated environmental explanations [J]. Acta Ecologica Sinica, 2007, 27(3): 930-937]
[31] 周启刚, 王陶, 刘栩位, 等. 三峡库区消落带生境质量时空演变特征及其地形梯度效应研究[J]. 地域研究与开发, 2022, 41(2): 155-160. [ZHOU Qigang, WANG Tao, LIU Xuwei, et al. Research on the teporal and spatial evolution characteristics oh habitat quality in the water-level-fluctuating zone of the Three Gorges Reservoir area and its topographic gradient effect [J]. Areal Research and Development, 2022, 41(2): 155-160] DOI: 10.3969/j.issn.1003-2363.2022.02.026
[32] 张华, 韩武宏, 宋金岳, 等. 祁连山国家公园生境质量时空演变[J]. 生态学杂志, 2021, 40(5): 1419-1430. [ZHANG Hua, HAN Wuhong, SONG Jinyue, et al. Spatial-temporal variations of habitat quality in Qilian Mountain National Park [J]. Chinese Journal of Ecology, 2021, 40(5): 1419-1430] DOI: 10.13292/j.1000-4890.202105.029
[33] GONG X, BRUECK H, GIESE K M, et al. Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China [J]. Journal of Arid Environments, 2008, 72(4): 483-493. DOI: 10.1016/j.jaridenv.2007.07.001
[34] 严岳鸿, 何祖霞, 苑虎, 等. 坡向差异对广东古兜山自然保护区蕨类植物多样性的生态影响[J]. 生物多样性, 2011, 19(1): 41-47. [YAN Yuehong, HE Zuxia, YUAN Hu, et al. The ecological response of fern diversity to different slopes in Gudoushan Nature Reserve, Guangdong [J]. Biodiversity Science, 2011, 19(1): 41-47] DOI: 10.3724/SP.J.1003.2011.07109
[35] 童珊, 曹广超, 闫欣, 等. 祁连山南坡2000—2020年植被覆盖时空演变及其驱动因素分析[J]. 山地学报, 2022, 40(4): 491-503. [TONG Shan, CAO Guangchao, YAN Xin, et.al. Spatial-temporal evolution of vegetation cover changes and its driving factors of vegetation cover on the south slope of the Qilian Mountains, China from 2000 to 2020 [J]. Mountain Research, 2022, 40(4): 491-503] DOI: 10.16089/j.cnki.1008-2786.000688
[36] 肖欣爽. 基于功能性状的亚高寒草甸坡向生境梯度群落构建过程研究[D]. 兰州: 兰州大学, 2016: 24-31. [XIAO Xinshuang. Community assembly on the habitat gradient of slope aspects in sub-alpine meadow based on functional traits [D]. Lanzhou: Lanzhou University, 2016: 24-31]
[37] 高若允, 杨柳生, 田雪, 等. 干热河谷阴、阳坡失稳性坡面植被与环境因子关系的冗余分析[J]. 山地学报, 2022, 40(6): 835-846. [GAO Ruoyun, YANG Liusheng, TIAN Xue, et.al. Redundancy analysis of the relationship between plant and environmental factors on shady and sunny unstable slope in dry-hot valley [J]. Mountain Research, 2022, 40(6): 835-846] DOI: 10.16089/j.cnki.1008-2786.000717
[38] 平红卫. 北方土石山区坡长对水土流失的影响研究—以长治市山区为例[J]. 山西水土保持科技, 2020(2): 17-19+26. [PING Hongwei. Research on the influence of slope length on soil erosion in northern soil-rock mountainous areas-take the mountainous area of Changzhi city as an example [J]. Soil and Water Conservation Science and Technology in Shanxi, 2020(2): 17-19+26]
[39] COOPS H, BEKLIOGIU M, CRISMAN T L. The role of water-level fluctuations in shallow lake ecosystems-workshop conclusions [J]. Hydrobiologia, 2003, 506-509(1): 23-27. DOI: 10.1023/b:hydr.0000008595.14393.77
[40] 王强, 袁兴中, 刘红, 等. 三峡水库156m蓄水后消落带新生湿地植物群落[J]. 生态学杂志, 2009, 28(11): 2183-2188. [WANG Qiang, YUAN Xingzhong, LIU Hong, et al. Plant communities in newly created wetlands in Water-level fluctuation zone of Three Gorges Reservoir after flooding to 156 m height [J]. Chinese Journal of Ecology, 2009, 28(11): 2183-2188] DOI: 10.13292/j.1000-4890.2009.0355
[41] HU Jiayu, XIE Yonghong, TANG Yue, et al. Changes of vegetation distribution in the east Dongting Lake after the operation of the Three Gorges Dam, China [J]. Frontiers in Plant Science, 2018, 9: 582. DOI: 10.3389/fpls.2018.00582
[42] 朱江涛, 艾金泉, 陈晓勇, 等. 基于 GEE 的鄱阳湖湿地植被长期变化特征及其对水文情势的响应[J]. 测绘通报, 2022(8): 7-13. [ZHU Jiangtao, AI Jinquan, CHEN Xiaoyong, et al. Long-term vegetation variation and its response to hydrological regime in Poyang Lake wetland based on GEE [J]. Surveying and Mapping Bulletin, 2022(8): 7-13] DOI: 10.13474/j.cnki.11-2246.2022.0225
[43] 王建超, 朱波, 汪涛. 三峡库区典型消落带淹水后草本植被的自然恢复特征[J]. 长江流域资源与环境, 2015, 20(5): 603-610. [WANG Jianchao, ZHU Bo, WANG Tao. Characteristics of restoration of natural herbaceous vegetation of typical water-level fluctuation zone after flooding in the Three Gorges reservoir area [J]. Resources and Environment in the Yangtze Basin, 2015, 20(5): 603-610]
[44] MARZLOFF M P, OLIVER E C J, BARRETT N S. Differential vulnerability to climate change yields novel deep-reef communities [J]. Nature Climate Change, 2018, 8: 873-878. DOI: 10.1038/s41558-018-0278-7
[45] DAKOS V, MATTHEWS B, HENDRY A P, et al. Ecosystem tipping points in an evolving world [J]. Nature Ecology and Evolution, 2019, 3: 355-362. DOI: 10.1038/s41559-019-0797-2
[46] DING Xiaohui, ZOU Jianfeng, LI Youzhi, et al. Acclimation of Salix triandroides cuttings to incomplete submergence is reduced by low light [J]. Aquatic Ecology, 2017, 51: 321-330. DOI: 10.1007/s10452-017-9619-2
[47] DING X H, LUO J, LI Y Z, et al. Survival of completely submerged Salix triandroides cuttings is associated with non-structural carbohydrate metabolism [J]. Journal of Freshwater Ecology, 2019, 34(1): 395-404. DOI: 10.1080/02705060.2019.1618930
[48] 饶洁, 段丁琪, 唐强, 等. 三峡水库消落带植被高程梯度分异及其对生境胁迫的响应[J]. 生态学报, 2023, 43(16): 6649-6660. [RAO Jie, DUAN Dingqi, TANG Qiang, et al. Vegetation differentiation along elevation gradient in the water level fluctuation zone of the Three Gorges Reservoir and its response to habitat stressing [J]. Acta Ecologica Sinica, 2023, 43(16): 6649-6660] DOI: 10.5846/stxb202205061258
[49] 黄磊. 宜昌市猇亭长江岸线消落带植物耐水淹适应性研究[J]. 中国水土保持, 2022, 489(12): 69-70. [HUANG Lei. Research on the water-tolerant adaptability of plants in the Yangtze River shoreline retreat zone in Yichang city [J]. Soil and Water Conservation in China, 2022, 489(12): 69-70] DOI: 10.14123/j.cnki.swcc.2022.0292
[50] 蓝苹予, 荣航, 姚作芳, 等. 间歇淹水和氨氮胁迫对3种园林植物形态与生理的影响特征[J/OL]. 热带作物学报, 2023: 1-12. [LAN Pingyu, RONG Hang, YAO Zuofang, et al. Effects of intermittent flooding and ammonia nitrogen stress on morphology and physiology of three garden plants [J/OL]. Chinese Journal of Tropical Crops, 2023: 1-12]
[51] 李建兴, 黄广杰, 熊寿德, 等. 4种乔木在三江并流区水库消落带生态修复中的适应性[J]. 水土保持通报, 2022, 42(6): 182-189. [LI Jianxing, HUANG Guangjie, XIONG Shoude, et al. Adaptability of four tree species in ecological restoration of reservoir fluctuating zone in paralle flow area of three rivers [J]. Bulletion of Soil and Water Conservation, 2022, 42(6): 182-189] DOI: 10.13961/j.cnki.stbctb.2022.06.035

相似文献/References:

[1]曾 珍,罗怀斌,范建容,等.四川宝兴森林分布及受损特征[J].山地学报,2014,(03):284.
 ZENG Zhen,LUO Huaibin,FAN Jianrong,et al.Calculating Surface Area of Forest Vegetation and Distribution Characters of Damaged Forest in Baoxing of Sichuan,China[J].Mountain Research,2014,(5):284.
[2]卢华兴,刘学军,汤国安,等.地形复杂度的多因子综合评价方法[J].山地学报,2012,(05):616.
 LU Huaxing,LIU Xuejun,TANG Guoan.Terrain Complexity Assessment Based on Multivariate Analysis[J].Mountain Research,2012,(5):616.
[3]胡卓玮,李洋,王志恒,等.基于DEM的四川省低山丘陵区坡度提取不确定性分析[J].山地学报,2012,(05):636.
 HU Zhuowei,LI Yang,WANG Zhiheng.Uncertainty Analysis Extracting from the Slope of Hilly Area of Sichuan Province Based on DEM[J].Mountain Research,2012,(5):636.
[4]李军.山区气温空间分布模拟的DEM尺度影响[J].山地学报,2012,(06):688.
 LI Jun.Spatialscaling Effect of DEM on the Simulation of Spatial Distribution of Temperature in Mountain Area[J].Mountain Research,2012,(5):688.
[5]张志明,尹梅,孙振华,等.基于GIS的梅里雪山国家公园土壤侵蚀敏感性情景分析[J].山地学报,2011,(02):154.
 ZHANG Zhiming,YIN Mei,SUN Zhenhuan,et al.A GIS-based Soil Erosion Model for Assessment of Vegetation Scenarios in Meili Snow Mountain National Park, Yunnan, China[J].Mountain Research,2011,(5):154.
[6]张勇,汤国安,彭釮.数字高程模型地形描述误差的量化模拟——以黄土丘陵沟壑区的实验为例[J].山地学报,2003,(02):252.
[7]张婷,汤国安,王峥,等.基于神经网络的地面坡度与其他地形定量因子关联性分析——以黄土高原丘陵沟壑区实验为例[J].山地学报,2004,(04):415.
[8]王春,汤国安,张婷,等.在降雨侵蚀中黄土地面坡度变化的高分辨研究[J].山地学报,2005,(05):589.
[9]史同广,郑昭佩,王智勇,等.GIS支持下的鲁东南丘陵区茶树土地适宜性评价[J].山地学报,2008,(05):560.
[10]范玉芳,罗友进,魏朝富,等.西南丘陵山区坡耕地水平梯田工程设计分析[J].山地学报,2010,(05):560.
[11]龙永清,张 旭,董梦洁,等.基于不同方向参考系DEM提取坡度的差异性分析[J].山地学报,2018,(03):462.[doi:10.16089/j.cnki.1008-2786.000342]
 LONG Yongqing,ZHANG Xu,DONG Mengjie,et al.Analysis of the Diversity of Slope Gradients Derived from DEM based on Spatial Reference Systems with Varied Orientations[J].Mountain Research,2018,(5):462.[doi:10.16089/j.cnki.1008-2786.000342]
[12]袁 兵,王彬权,袁光银,等.基于DEM的对称13点局部窗口坡度算法分析[J].山地学报,2019,(01):137.[doi:10.16089/j.cnki.1008-2786.000407]
 YUAN Bing,WANG Binquan,YUAN Guangyin,et al.Slope Computation Analysis of Symmetric 13 Nodes Local Window Based on Grid DEM[J].Mountain Research,2019,(5):137.[doi:10.16089/j.cnki.1008-2786.000407]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-04-11; 改回日期(Accepted date):2023-10-14
基金项目(Foundation item): 湖南重点研发项目(2019SK2336); 湖南省水利科技项目(XSKJ2022068-31); 郴州国家可持续发展议程创新示范区建设专项(2019sfq21)。[Key Program of Research and Development of Hunan Province(2019SK2336); Water Resources Science and Technology Program of Hunan Province(XSKJ2022068-31); Chenzhou National Sustainable Development Agenda Innovation Demonstration Zone Construction Project(2019sfq21)]
作者简介(Biography): 刘春香(2000-),女,湖南邵阳人,硕士研究生,主要研究方向:湿地生态。[LIU Chunxiang(2000-), female, born in Shaoyang, Hunan province, M.Sc. candidate, research on wetland ecology] E-mail: 2228036598@qq.com
*通讯作者(Corresponding author): 李有志(1981-),男,博士,教授,主要研究方向:湿地生态与环境。[LI Youzhi(1981-), male, Ph.D., professor, research on wetland ecology and environment] E-mail:liyouzhi2004@163.com
更新日期/Last Update: 2023-09-30