[1]胡文斌a,乔 雪b,c,等.基于降水特征的华西雨屏地理范围界定[J].山地学报,2023,(5):662-675.[doi:10.16089/j.cnki.1008-2786.000778]
 HU Wenbina,QIAO Xueb,c,et al.Geographic Extent of the West China Rain Zone Determined by Precipitation Characteristics[J].Mountain Research,2023,(5):662-675.[doi:10.16089/j.cnki.1008-2786.000778]
点击复制

基于降水特征的华西雨屏地理范围界定
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第5期
页码:
662-675
栏目:
山地环境
出版日期:
2023-11-15

文章信息/Info

Title:
Geographic Extent of the West China Rain Zone Determined by Precipitation Characteristics
文章编号:
1008-2786-(2023)5-662-14
作者:
胡文斌1a乔 雪1b 1c陈科艺2唐 亚1a1c*
(1. 四川大学 a. 建筑与环境学院; b. 新能源与低碳技术研究院; c. 水力学与山区河流开发保护国家重点实验室, 成都 610065; 2. 成都信息工程大学 大气科学学院,成都 610225)
Author(s):
HU Wenbin1a QIAO Xue1b 1c CHEN Keyi2 TANG Ya1a 1c*
(1. a. College of Architecture and Environment; b. Institute of New Energy and Low-Carbon Technology; c. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China; 2. School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China)
关键词:
华西雨屏 气候特征 生态建设 降水分布 四川盆地
Keywords:
the West China Rain Zone climatic characteristics ecological construction precipitation distribution the Sichuan basin
分类号:
P942; P462
DOI:
10.16089/j.cnki.1008-2786.000778
文献标志码:
A
摘要:
华西雨屏位于四川盆地向青藏高原的过渡区域,是中国西部年降水量的高值区之一,具有重要的生态服务价值,明确其地理范围有助于区域生态环境保护、山区发展和灾害防治。本文基于1975—2014年地面降水数据和2010—2019年CMORPH卫星降水数据,通过计算降水量和降水频次的空间距平值及应用空间聚类分析方法,分析了华西雨屏带与周边地区的降水差异,首次界定了华西雨屏的地理范围。结果表明:(1)华西雨屏带的整体范围北起广元市嘉陵江附近,沿四川盆地西部边缘山地及山前平原逆时针向南,止于宜宾市中东部,其降水量和降水频次都明显高于周边地区;(2)华西雨屏带由核心区、南支区和北支区组成,核心区位于雅安—峨眉山地区,即狭义华西雨屏区,南支区主要在冬半年表现出较高的降水量和降水频次,北支区在7—9月因多发暴雨而降水量偏高,南、北两支均是周期性的“准雨屏带”;(3)华西雨屏带降水具有明显的时空差异性,在研究华西雨屏带气候及相关生态环境问题时应注意区分季节和地区。本研究能提高人们对华西雨屏的认识并为区域生态环境保护和发展提供科学依据。
Abstract:
The West China Rain Zone(WCRZ)is described by scholars as a strip of transition zone of precipitation extended approximately from the western edge of the Sichuan basin to the Qinghai-Tibet Plateau. WCRZ is one of the high-value areas of annual precipitation in western China, with important ecological service merits. Defining its geographic range can help regional ecological environmental protection, mountain development and disaster prevention and control.
In this paper, it initiatively defined the geographical boundary of WCRZ according to precipitation records collected at meteorological observations from 1975 to 2014 and CMORPH satellite data from 2010 to 2019. It analyzed the precipitation differences between WCRZ and its surrounding areas by calculating the spatial anomaly of precipitation values and precipitation frequency, and applying spatial clustering analysis.
It found(1)the overall extent of WCRZ started in the north near the Jialingjiang River in Guangyuan city; immediately it run counterclockwise southward along mountains and piedmont plains on the western edge of the Sichuan basin, and ended in the east-central part of Yibin city, where the precipitation and its frequency were significantly higher than those in the surrounding areas.(2)WCRZ consisted of a core area, a southern branch area and a northern branch area, with the core area located in the Ya'an-Mount Emei area, i.e., WCRZ sensu stricto; in the southern branch area it had high precipitation and precipitation frequency in winter half years, while in the northern branch area high precipitation resulted from heavy rainstorms from July to September; the southern and northern branches were both periodic quasi-rain zone.(3)Precipitation in WCRZ had obvious spatial-temporal variability, and any scientific attention to the climate and related ecological and environmental issues in WCRZ should be aware of the spatial-temporal differentiation in connection with seasons or regions.
This study gives an insight into WCRZ and provides scientific basis for regional ecological conservation and development.

参考文献/References:

[1] 傅伯杰, 欧阳志云, 施鹏, 等. 青藏高原生态安全屏障状况与保护对策[J]. 中国科学院院刊, 2021, 36(11): 1298-1306. [FU Bojie, OUYANG Zhiyun, SHI Peng, et al. Current condition and protection strategies of Qinghai-Tibet Plateau ecological security barrier [J]. Bulletin of Chinese Academy of Sciences, 2021, 36(11): 1298-1306] DOI: 10.16418/j.issn.1000-3045.20210919001
[2] 四川省统计局. 四川统计年鉴[M]. 北京: 中国统计出版社, 2021: 40-41. [Statistical Bureau of Sichuan. Sichuan statistical yearbook [M]. Beijing: China Statistics Press, 2021: 40-41]
[3] 庄平, 高贤明. 华西雨屏带及其对我国生物多样性保育的意义[J]. 生物多样性, 2002, 10(3): 339-344. [ZHUANG Ping, GAO Xianming. The concept of the Rainy Zone of West China and its significance to the biodiversity conservation in China [J]. Biodiversity Science, 2002, 10(3): 339-344] DOI: 10.17520/biods.2002047
[4] 中华人民共和国国务院. 国务院关于印发全国主体功能区规划的通知[J]. 北京: 中华人民共和国国务院公报, 2011(17): 3-89. [State Council of the People's Republic of China. Circular of the State Council on printing and distributing the National Major Functional Area plan [J]. Beijing: Gazette of the State Council of the People's Republic of China, 2011(17): 3-89]
[5] 竺可桢. 中国气候之要素(续)[J]. 地理学报, 1935, 2(2): 1-31. [CHU Coching. Climatic factors of China(continued)[J]. Acta Geographica Sinica, 1935, 2(2): 1-31] DOI: 10.11821/xb193502001
[6] 卢鋈. 川康边区之雨量[J]. 气象学报, 1942(Z1): 23-35. [LU Wu. The precipitation of the SE Tibetan borderland [J]. Acta Meteorologica Sinica, 1942(Z1): 23-35]
[7] 王佳津, 陈朝平, 刘莹, 等. 四川省持续性暴雨定义及时空分布特征[J]. 气象科技, 2017, 45(2): 331-341. [WANG Jiajin, CHEN Chaoping, LIU Ying, et al. Statistical analysis of persistent heavy rainfall in Sichuan [J]. Meteorological Science and Technology, 2017, 45(2): 331-341] DOI: 10.19517/j.1671-6345.20160242
[8] 卿清涛, 陈文秀, 詹兆渝. 四川省暴雨洪涝灾害损失时空演变特征分析[J]. 高原山地气象研究, 2013, 33(1): 47-51. [QING Qingtao, CHEN Wenxiu, ZHAN Zhaoyu. Characteristics of spatial and temporal distribution of losses caused by flood damage [J]. Plateau and Mountain Meteorology Research, 2013, 33(1): 47-51] DOI: 10.3969/j.issn.1674-2184.2013.01.008
[9] 李昱锐, 陈朝平, 陈权亮, 等. 四川地区短时强降水事件时空演变特征研究[J]. 高原山地气象研究, 2021, 41(3): 42-49. [LI Yurui, CHEN Chaoping, CHEN Quanliang, et al. Temporal and spatial evolution characteristics of the short-duration strong rainfall events in Sichuan [J]. Plateau and Mountain Meteorology Research, 2021, 41(3): 42-49] DOI: 10.3969/j.issn.1674-2184.2021.03.006
[10] XIONG K, ADHIKARI B R, STAMATOPOULOS C A, et al. Comparison of different machine learning methods for debris flow susceptibility mapping: A case study in the Sichuan province, China [J]. Remote Sensing, 2020, 12(2): 295. DOI: 10.3390/rs12020295
[11] 杨红娟, 韦方强, 马振峰, 等. 四川省泥石流灾害的时空分布规律和降水特征[J]. 灾害学, 2017, 32(4): 102-107. [YANG Hongjuan, WEI Fangqiang, MA Zhenfeng, et al. Spatial-temporal distribution of debris flows in Sichuan province in China and the corresponding rainfall characteristics [J]. Journal of Catastrophology, 2017, 32(4): 102-107] DOI: 10.3969/j.issn.1000-811X.2017.04.018
[12] 郎燕, 刘宁, 刘世荣. 气候和土地利用变化影响下生态屏障带水土流失趋势研究[J]. 生态学报, 2021, 41(13): 5106-5117. [LANG Yan, LIU Ning, LIU Shirong. Changes in soil erosion and its driving factors under climate change and land use scenarios in Sichuan-Yunnan-Loess Plateau region and the Southern Hilly Mountain Belt, China [J]. Acta Ecologica Sinica, 2021, 41(13): 5106-5117] DOI: 10.5846/stxb202101310341
[13] ZHANG Yueying, CAO Yuanfei, TANG Ya, et al. Wet deposition of sulfur and nitrogen at Mt. Emei in the West China Rain Zone, southwestern China: Status, inter-annual changes, and sources [J]. Science of the Total Environment, 2020, 713: 136676. DOI: 10.1016/j.scitotenv.2020.136676
[14] 杨开军, 杨万勤, 庄丽燕, 等. 四川盆地西缘都江堰大气氮素湿沉降特征[J]. 应用与环境生物学报, 2018, 24(1): 107-111. [YANG Kaijun, YANG Wanqin, ZHUANG Liyan, et al. Characteristics of atmospheric wet nitrogen deposition in Dujiangyan, western edge of Sichuan Basin [J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(1): 107-111] DOI: 10.19675/j.cnki.1006–687x.2017.04001
[15] QIAO Xue, WANG Peng, ZHANG Jie, et al. Spatial-temporal variations and source contributions to forest ozone exposure in China [J]. Science of the Total Environment, 2019, 674: 189-199. DOI: 10.1016/j.scitotenv.2019.04.106
[16] 赖世会, 江全富, 贾晨, 等. 华西雨屏区不同林分类型对土壤化学性质的影响[J]. 四川林业科技, 2021, 42(4): 35-40. [LAI Shihui, JIANG Quanfu, JIA Chen, et al. Effects of different stand types on soil chemical properties in Rainy Zone of West China[J]. Journal of Sichuan Forestry Science and Technology, 2021, 42(4): 35-40] DOI: 10.12172/202101050001
[17] 田祥宇, 涂利华, 胡庭兴, 等. 华西雨屏区苦竹人工林土壤呼吸各组分特征及其温度敏感性[J]. 应用生态学报, 2012, 23(2): 293-300. [TIAN Xiangyu, TU Lihua, HU Tingxing, et al. Characteristics of soil respiration components and their temperature sensitivity in a Pleioblastus amarus plantation in Rainy Area of West China [J]. Chinese Journal of Applied Ecology, 2012, 23(2): 293-300] DOI: 10.13287/j.1001-9332.2012.0070
[18] 吴福佳, 游成铭, 朱亮, 等. 华西雨屏区常绿阔叶林4种重金属的空间分布特征[J]. 四川农业大学学报, 2020, 38(1): 36-42. [WU Fujia, YOU Chengming, ZHU Liang, et al. Spatial distribution characteristics of four heavy metals in evergreen broad-leaved forest in Rainy Area of West China [J]. Journal of Sichuan Agricultural University, 2020, 38(1): 36-42] DOI: 10.16036/j.issn.1000-2650.2020.01.006
[19] ZHOU Shixing, HUANG Congde, HAN Bohan, et al. Simulated nitrogen deposition significantly suppresses the decomposition of forest litter in a natural evergreen broad-leaved forest in the Rainy Area of Western China [J]. Plant Soil, 2017, 420: 135-145. DOI: 10.1007/s11104-017-3383-x
[20] 孙宇, 彭天驰, 李顺, 等. 模拟氮沉降对湿性常绿阔叶次生林土壤碳氮组分和酶活性的影响[J]. 水土保持学报, 2019, 33(2): 235-243+250. [SUN Yu, PENG Tianchi, LI Shun, et al. Effects of simulated nitrogen deposition on soil carbon and nitrogen fractions and enzyme activity in moist evergreen broad-leaved secondary forest [J]. Journal of Soil and Water Conservation, 2019, 33(2): 235-243+250] DOI: 10.13870/j.cnki.stbcxb.2019.02.037
[21] 向元彬, 周世兴, 肖永翔, 等. 模拟氮沉降和降雨量改变对华西雨屏区常绿阔叶林土壤有机碳的影响[J]. 生态学报, 2017, 37(14): 4686-4695. [XIANG Yuanbin,ZHOU Shixing,XIAO Yongxiang, et al. Effects of simulated nitrogen deposition and precipitation changes on soil organic carbon in an evergreen broad-leaved forest that is part of the Rainy Area of Western China [J]. Acta Ecologica Sinica, 2017, 37(14): 4686-4695] DOI: 10.5846/stxb201604250784
[22] 国家气象信息中心. 中国国家级地面气象站基本气象要素日值数据集(V3.0)[DS]. 2015. [China National Meteorological Information Center. Daily meteorological dataset of basic meteorological elements of China national surface weather station(V3.0)[DS]. 2015]
[23] ROY D, BANU S. Comparison of satellite derived rainfall estimations: CMORPH, IMERG and GSMaP with observed precipitation [J]. American Journal of Climate Change, 2021, 10(4): 407-421. DOI: 10.4236/ajcc.2021.104021
[24] KIM J, HAN H. Evaluation of the CMORPH high-resolution precipitation product for hydrological applications over South Korea [J]. Atmospheric Research, 2021, 258: 105650. DOI: 10.1016/j.atmosres.2021.105650
[25] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903. [GUO Ruifang,LIU Yuanbo. Multi-satellite retrieval of high resolution precipitation: An overview [J]. Advances in Earth Science, 2015, 30(8): 891-903] DOI: 10.11867/j.issn.1001-8166.2015.08.0891
[26] 曾岁康, 雍斌. 全球降水计划IMERG和GSMaP反演降水在四川地区的精度评估[J]. 地理学报, 2019, 74(7): 1305-1318. [ZENG Suikang, YONG Bin. Evaluation of the GPM-based IMERG and GSMaP precipitation estimates over the Sichuan region [J]. Acta Geographica Sinica, 2019, 74(7): 1305-1318] DOI: 10.11821/dlxb201907003
[27] 赵亚迪. 中国区域TRMM 3B42 RT和CMORPH降水资料的评估与校正[D]. 焦作: 河南理工大学, 2018: 49-50. [ZHAO Yadi. Evaluation and correction of TRMM 3B42 RT and CMORPH precipitation data in the region of China [D]. Jiaozuo: Henan Polytechnic University, 2018: 49-50]
[28] DEHGHAN Z, ESLAMIAN S S, MODARRES R. Spatial clustering of maximum 24-h rainfall over Urmia Lake Basin by new weighting approaches [J]. International Journal of Climatology, 2018, 38(5): 2298-2313. DOI: 10.1002/joc.5335
[29] 孙昭萱, 杨小波, 甘薇薇, 等. 四川省月尺度降水的分型及预测[Z]. 成都: 四川省气候中心, 2016. [SUN Zhaoxuan, YANG Xiaobo, GAN Weiwei, et al. Classification and prediction of monthly precipitation in Sichuan province [Z]. Chengdu: Sichuan Climate Center, 2016]
[30] 王俊驿, 唐沛. 雅安地区降雨时空变化特征研究[J]. 高原山地气象研究, 2020, 40(3): 54-58. [WANG Junyi, TANG Pei. Study on spatial-temporal variation characteristics of precipitation in Ya'an area [J]. Plateau and Mountain Meteorology Research, 2020, 40(3): 54-58] DOI: 10.3969/j.issn.1674-2184.2020.03.008
[31] 李桂垣, 张瑞云. 四川二郎山鸟类初步调查报告[J]. 动物学杂志, 1964(3): 110-115. [LI Guiyuan, ZHANG Ruiyun. A survey of birds in Erlang Mountain in Sichuan [J]. Chinese Journal of Zoology, 1964(3): 110-115] DOI: 10.13859/j.cjz.1964.03.005
[32] 张雪芹, 徐晓明, 李想. 近40年增暖背景下岷江流域降水异常变化[J]. 自然灾害学报, 2022, 31(4): 44-56. [ZHANG Xueqin, XU Xiaoming, LI Xiang. Changes of abnormal precipitation with warming in the Minjiang River Basin in the past 40 years [J]. Journal of Natural Disasters, 2022, 31(4): 44-56] DOI: 10.13577/j.jnd.2022.0404
[33] 余益祺, 肖天贵. 成都平原经济区气候特征分析[J]. 高原山地气象研究, 2021, 41(2): 143-149. [YU Yiqi, XIAO Tiangui. Study on climatic characteristics of Chengdu Plain economic zone [J]. Plateau and Mountain Meteorology Research, 2021, 41(2): 143-149] DOI: 10.3969/j.issn.1674-2184.2021.02.017
[34] 李昕翼, 肖国杰, 白爱娟, 等. 成都地区降水时空分布变化[J]. 气象科技, 2011, 39(4): 417-422. [LI Xinyi, XIAO Guojie, BAI Aijuan, et al. Temporal-spatial distribution of precipitation in Chengdu [J]. Meteorological Science and Technology, 2011, 39(4): 417-422] DOI: 10.19517/j.1671-6345.2011.04.005
[35] 左良优. 近50年来四川省蒲江县气候变化特征初探[J]. 首都师范大学学报(自然科学版), 2017, 38(2): 60-64. [ZUO Liangyou. Primary investigation on the characteristics of climate change in Pujiang in recent 50 years [J]. Journal of Capital Normal University(Natural Science Edition), 2017, 38(2): 60-64] DOI: 10.19789/j.1004-9398.2017.02.013
[36] 胡毅, 朱克云, 李跃春, 等. 成都平原中西部近40年气候特征及其变化研究[J]. 成都信息工程学院学报, 2004, 19(2): 223-231. [HU Yi, ZHU Keyun, LI Yuechun, et al. Climatic features and changes in the middle and western Chengdu Plain during past 40 years [J]. Journal of Chengdu University of Information Technology, 2004, 19(2): 223-231]
[37] 曾艳婷. 近50年来绵阳市气候时空变化特征分析[D]. 成都: 四川师范大学, 2021: 53-71. [ZENG Yanting. Analysis on characteristics of temporal and spatial changes of climate in Mianyang city in the past 50 [D]. Chengdu: Sichuan Normal University, 2021: 53-71]
[38] 钟爱华, 李跃清. 川北绵阳地区降水量的时空分布特征及变化趋势[J]. 高原山地气象研究, 2009, 29(4): 63-69. [ZHONG Aihua, LI Yueqing. Spatial and temporal distribution characteristics and variation tendency of precipitation in Mianyang [J]. Plateau and Mountain Meteorology Research, 2009, 29(4): 63-69] DOI: 10.3969/j.issn.1674-2184.2009.04.010
[39] 刘开发. 广元气候资源的特点及综合评价[J]. 西南工学院学报, 1995, 10(3): 70-73. [LIU Kaifa. The characteristics and comprehensive evaluation of climatic resources of Guangyuan [J]. Journal of Southwest Institute of Technology, 1995, 10(3): 70-73]
[40] 赵衍斌, 肖天贵. 四川地区强降水的时空分布特征[J]. 成都信息工程大学学报, 2016, 31(1): 94-101. [ZHAO Yanbin, XIAO Tiangui. The temporal and spatial distribution of heavy rainfall in Sichuan [J]. Journal of Chengdu University of Information Technology, 2016, 31(1): 94-101]
[41] 冯良敏, 陈朝平. 南支槽对四川地区降水影响的定量分析[J]. 气象科技, 2019, 47(2): 262-268. [FENG Liangmin, CHEN Chaoping. Quantitative analysis of influence of south branch trough on precipitation in Sichuan area [J]. Meteorological Science and Technology, 2019, 47(2): 262-268] DOI: 10.19517/j.1671-6345.20180143
[42] 李波. 川南降水的地理分布[J]. 内江师范学院学报, 1987(S1): 89-99. [LI Bo. Geographical distribution of precipitation in south Sichuan [J]. Journal of Neijiang Normal University, 1987(S1): 89-99]
[43] 成璐, 沈润平, 师春香, 等. CMORPH和TRMM 3B42降水估计产品的评估检验[J]. 气象, 2014, 40(11): 1372-1379. [CHENG Lu, SHEN Runping, SHI Chunxiang, et al. Evaluation and verification of CMORPH and TRMM 3B42 precipitation estimation products [J]. Meteorological Monthly, 2014, 40(11): 1372-1379] DOI: 10.7519/j.issn.1000-0526.2014.11.010
[44] 徐八林, 许彦艳, 解莉燕, 等. 雷达估测降水在山洪灾害中的应用分析[J]. 云南大学学报(自然科学版), 2021, 43(2): 326-334. [XU Balin, XU Yanyan, XIE Liyan, et al. Application analysis of radar-measured precipitation in mountain flood disaster [J]. Journal of Yunnan University: Natural Sciences Edition, 2021, 43(2): 326-334] DOI: 10.7540/j.ynu.20200122
[45] 马振锋, 彭骏, 高文良, 等. 近40年西南地区的气候变化事实[J]. 高原气象, 2006, 25(4): 633-642. [MA Zhenfeng, PENG Jun, GAO Wenliang, et al. Climate variation of southwest China in recent 40 years [J]. Plateau Meteorology, 2006, 25(4): 633-642]
[46] 吕晶, 李忠贤, 李跃清, 等. 峨眉山及其周边地区降水气候特征研究[J]. 高原气象, 2018, 37(6): 1544-1562. [LYU Jing, LI Zhongxian, LI Yueqing, et al. Study on the climate characteristics of precipitation in Emei Mountain and its surrounding area [J]. Plateau Meteorology, 2018, 37(6): 1544-1562] DOI: 10.7522/j.issn.1000-0534.2018.00049
[47] FAN Jiwen, ROSENFELD D, YANG Yan, et al. Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China [J]. Geophysical Research Letters, 2015, 42(16): 6066-6075. DOI: 10.1002/2015GL064479

相似文献/References:

[1]杨庆华,侯献华*,杨振京,等.柴达木盆地西部末次间冰期以来植被特征及其环境变化[J].山地学报,2017,(05):742.[doi:10.16089/j.cnki.1008-2786.000274]
 YANG Qinghua,HOU Xianhua*,YANG Zhenjing,et al.Vegetation Characteristics and Environmental Changes since the Last Interglacial Period in Western Qaidam Basin[J].Mountain Research,2017,(5):742.[doi:10.16089/j.cnki.1008-2786.000274]
[2]余忠水,陈 华,德吉白玛,等.基于ERA-Interim的青藏高原近40年云量的时空分布特征[J].山地学报,2022,(6):811.[doi:10.16089/j.cnki.1008-2786.000715]
 YU Zhongshui,CHEN Hua,DEJI Baima,et al.Spat-Temporal Distribution of the Cloud Amount in the Qinghai-Tibet Plateau of China for the Past 40 Years Based on ERA-Interim[J].Mountain Research,2022,(5):811.[doi:10.16089/j.cnki.1008-2786.000715]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-03-29; 改回日期(Accepted date):2023-10-20
基金项目(Foundation item): 国家自然科学基金(41929002)。[National Natural Science Foundation of China(41929002)]
作者简介(Biography): 胡文斌(1992-),男,陕西铜川人,硕士研究生,主要研究方向:气候与环境变化。[HU Wenbin(1992-), male, born in Tongchuan, Shaanxi province, M.Sc. candidate, research on climate and environmental change] E-mail: hwb_hj@163.com
*通讯作者(Corresponding author): 唐亚(1963-),男,贵州盘州人,博士,教授,主要研究方向:环境生态学。[TANG Ya(1963-), male, born in Panzhou, Guizhou province, Ph.D., professor, research on environmental ecology] E-mail: tangya@scu.edu.cn
更新日期/Last Update: 2023-09-30