[1]张信宝,刘维明,陈宁生,等.青藏高原面地貌稳定态与高原隆升时间[J].山地学报,2023,(4):459-468.[doi:10.16089/j.cnki.1008-2786.000762 ]
 ZHANG Xinbao,LIU Weiming,CHEN Ningsheng,et al.Geomorphological Steady State of the Tibet Plateau and Its Uplift Time[J].Mountain Research,2023,(4):459-468.[doi:10.16089/j.cnki.1008-2786.000762 ]
点击复制

青藏高原面地貌稳定态与高原隆升时间
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第4期
页码:
459-468
栏目:
专家观点
出版日期:
2023-07-20

文章信息/Info

Title:
Geomorphological Steady State of the Tibet Plateau and Its Uplift Time
文章编号:
1008-2786-(2023)4-459-10
作者:
张信宝1刘维明1陈宁生12代 彬23
(1.中国科学院、水利部成都山地灾害与环境研究所,成都 610041; 2.中国科学院大学,北京 100049; 3.贵州普定喀斯特生态系统国家野外科学观测研究站,贵州 普定 562100)
Author(s):
ZHANG Xinbao1LIU Weiming1CHEN Ningsheng12DAI Bin23
(1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; 2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; 3. Puding Karst Ecosystem National Observation and Research Station National Ecosystem Research Network of China, Puding 562100,Guizhou, China)
关键词:
地貌垂直地带性 地貌演化模型 GPS隆升时间 青藏高原
Keywords:
geomorphic vertical zone geomorphic evolution model GPS uplifting time the Tibet Plateau
分类号:
P931.2
DOI:
10.16089/j.cnki.1008-2786.000762
文献标志码:
B
摘要:
本文基于地貌垂直地带性理论,提出计算高原隆升时间的地貌演化模型,并利用GPS现代垂直位移速率资料,计算青藏高原高原隆升时间。海拔4000~5000 m的青藏高原高原面为冰缘地貌带,以上为冰川地貌带,以下为流水地貌带。青藏高原面的构造隆升速率难以超过砂板岩等软弱岩层的冻融侵蚀剥夷速率,处于地貌稳定态,高程受冰缘气候控制,与隆升速率无关。花岗岩、石灰岩等坚硬岩层组成的冰川山地,抗寒冻风化能力强,剥蚀和隆升的竞争中,隆升战胜剥蚀,处于地貌不稳定态,山地持续上升。根据珠峰高程、剥蚀岩层厚度,高原面高程和隆升速率,利用模型求得从青藏高原隆升到现今冰缘地貌带高程以来的隆升时间为2.5 Ma~7.8 Ma。
Abstract:
Based on the theory of vertical zonality in geomorphology, this study introduced a geomorphic evolution model to calculate the uplifting time of the Tibet Plateau, which then was justified by the calculation obtained by GPS modern vertical displacement data. The plateau surface of the Tibet Plateau at an altitude of 4000-5000 m is a periglacial geomorphic zone, with glacial geomorphic zone above it and flowing water geomorphic zone below it. The tectonic uplift rate of the Plateau is not expected to exceed the rate of freeze-thaw erosion and stripping of weak rock layers such as sandstone slate; the Plateau surface is in a geomorphological steady state; the Plateau elevation is controlled by periglacial climate and has nothing to do with uplift rate. Glacial mountains above the Plateau ground composed of hard rock formations, such as granite and limestone, have strong resistance to frost weathering; the Plateau uplift overcomes frost denudation, leading to an unstable geomorphological state, with a steady rising in Plateau elevation. According to the peak elevation of Mount Qomolangma, the thickness of denuded rock layer, the elevation of the Plateau surface and the average rate of uplift measured by GPS in the Himalaya regions, by our model we estimate that the uplift time for the Qinghai-Tibet Plateau from the start of uplift to the elevation of the present-day periglacial geomorphic zone is 2.5-7.8 Ma.

参考文献/References:

[1] 施雅风, 刘东生. 希夏邦马峯地区科学考察初步报告[J]. 科学通报, 1964(10): 928-938. [SHI Yafeng, LIU Dongsheng. Preliminary report of scientific investigation in Shishapangma Peak area [J]. Chinese Science Bulletin, 1964(10): 928-938]
[2] 黄万波, 计宏祥. 西藏三趾马动物群的首次发现及其对高原隆起的意义[J]. 科学通报, 1979(19): 885-888. [HUANG Wanbo, JI Hongxiang. Discovery of hipparion fauna in Xizang [J]. Chinese Science Bulletin, 1979(19): 885-888]
[3] 李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 2001, 21(5): 381-391. [LI Jijun, FANG Xiaomin, PAN Baotian, et al. Late Cenozoic intensive uplift of Qinghai-Xizang plateau and its impacts on environments in surrounding area [J]. Quaternary Sciences, 2001, 21(5): 381-391]
[4] 李吉均, 方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报, 1998, 43(15): 1569-1574. [LI Jijun, FANG Xiaomin. Research on Tibet Plateau uplift and environmental change [J]. Chinese Science Bulletin, 1998, 43(15): 1569-1574]
[5] 李吉均, 方小敏, 马海洲, 等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学(D辑: 地球科学), 1996, 26(4): 316-322. [LI Jijun, FANG Xiaomin, MA Haizhou, et al. Late Cenozoic geomorphological evolution of the upper reaches of the Yellow River and uplift of the Tibet Plateau [J]. Science in China(Series D), 1996, 26(4): 316-322]
[6] HARRISON T M, COPELAND P, KIDD W S F, et al. Activation of the Nyainquentanghla shear zone: Implications for uplift of the southern Tibetan Plateau [J]. Tectonics, 1995, 14(3): 658-676. DOI:10.1029/95TC00608
[7] HARRISON T M, COPELAND P, KIDD W S F, et al. Raising Tibet [J]. Science, 1992, 5052(255): 1663-1670. DOI:10.1126/science.255.5052.1663
[8] COLEMAN M, HODGES K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension [J]. Nature, 1995, 374: 49-52. DOI:10.1038/374049a0
[9] ROWLEY D B, CURRIE B S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet [J]. Nature, 2006, 439(7077): 677-681. DOI:10.1038/nature04506
[10] HE Songlin, DING Lin, XIONG Zhongyu, et al. A distinctive Eocene Asian monsoon and modern biodiversity resulted from the rise of eastern Tibet [J]. Science Bulletin, 2022, 67(21): 2245-2258. DOI:10.1016/j.scib.2022.10.006
[11] 丁林, 来庆洲. 冈底斯地壳碰撞前增厚及隆升的地质证据:岛弧拼贴对青藏高原隆升及扩展历史的制约[J]. 科学通报, 2003, 48(8): 836-842. [DING Lin, LAI Qingzhou. Geological evidence of thickening and uplifting of the Gangdise crust before collision: Constraints of island arc collage on the uplift and expansion history of the Tibet Plateau [J]. Chinese Science Bulletin, 2003, 48(8): 836-842]
[12] 钟大赉, 丁林. 青藏高原的隆起过程及其机制探讨[J]. 中国科学(D辑: 地球科学),1996, 26(4): 289-295. [ZHONG Dalai, DING Lin. The uplift process of the Qinghai-Tibet Plateau and its mechanism [J]. Science in China(Series D), 1996, 26(4): 289-295]
[13] WOLF S G, HUISMANS R S, BRAUN J, et al. Topography of mountain belts controlled by rheology and surface processes [J]. Nature, 2022, 606(7914): 516-521. DOI:10.1038/s41586-022-04700-6
[14] BURBANK D W. Rates of erosion and their implications for exhumation [J]. Mineralogical Magazine, 2002, 66(1): 25-52. DOI:10.1180/0026461026610014
[15] 张信宝, 吴积善, 汪阳春. 川西北高原地貌垂直地带性及山地灾害对南水北调西线工程的影响[J]. 地理研究, 2006, 25(4): 633-640. [ZHANG Xinbao, WU Jishan, WANG Yangchun. Vertical geomorphologic zonation on the Northwest Sichuan Plateau and the effects of mountain hazards on the West Route of the South to North Water Diversion Project [J]. Geographical Research, 2006, 25(4): 633-640]
[16] 张信宝, 周力平, 汪阳春, 等. 地带性与非地带性夷平面[J]. 第四纪研究, 2007, 27(1): 93-99. [ZHANG Xinbao, ZHOU Liping, WANG Yangchun, et al. Zonal and non-zonal planation surfaces [J]. Quaternary Sciences, 2007, 27(1): 93-99]
[17] 张信宝, 吴积善, 汪阳春, 等. 川西北高原的地貌垂直地带性与寒冻夷平面[J]. 山地学报, 2006, 24(5): 607-611. [ZHANG Xinbao, WU Jishan, WANG Yangchun, et al. Vertical geomorphologic zonation in the Northwest Sichuan Plateau and freezing planation surface [J]. Mountain Research, 2006, 24(5): 607-611] DOI:10.16089/j.cnki.1008-2786.2006.05.016
[18] 张信宝, 吴积善, 汪阳春. 川西北高原地貌垂直地带性及其联想[G]//地质力学专业委员会与第四纪地质专业委员会. 青藏高原地质过程与环境灾害效应文集. 北京: 地震出版社, 2005: 78-83. [ZHANG Xinbao, WU Jishan, WANG Yangchun. Vertical geomorphologic zonation in the Northwest Sichuan Plateau and their associations [G]// Geological Mechanics Committee and Quaternary Geology Committee. Collected papers of geological processes and effects of environmental disasters in the Tibet Plateau. Beijing: Seismological Press, 2005: 78-83]
[19] 刘淑珍, 王明龙. 横断山区第四纪冰川地貌[G]//高生淮, 郑远昌. 横断山研究文集. 成都: 四川科学技术出版社, 1989: 13-22. [LIU Shuzhen, WANG Minglong. Quaternary glacial landforms in Hengduan Mountains [G]//GAO Shenghuai, ZHENG Yuanchang. Research collection of Hengduan Mountains. Chengdu: Sichuan Science and Technology Press, 1989: 13-22]
[20] ZHANG Xinbao, HE Xiubin, WANG Yangchun, et al, Planation surfaces on the Tibet Plateau, China [J]. Journal of Mountain Sciences, 2008, 5: 310-317. DOI:10.1007/s11629-008-0147-3
[21] LIANG Shiming, GAN Weijun, SHEN Chuanzheng, et al. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements [J]. Journal of Geophysical Research: Solid Earth, 2013, 118: 5722-5732. DOI:10.1002/2013JB010503
[22] 方智伟, 邹蓉, 李志才, 等. 用cGPS研究青藏高原南缘现今垂向变动[J]. 地球物理学报, 2022, 65(6): 1965-1979. [FANG Zhiwei, ZOU Rong, LI Zhicai, et al. Present-day vertical motions in southern Tibetan Plateau constrained by cGPS measurements [J]. Chinese Journal of Geophysics, 2022, 65(6): 1965-1979] DOI:10.6038/cig2022P0050
[23] HE Jiankun, LU Shuangjiang, WANG Weimin. Three-dimensional mechanical modeling of the GPS velocity field around the northeastern Tibetan Plateau and surrounding regions [J]. Tectonophysics, 2013, 584: 257-266. DOI:10.1016/j.tecto.2012.03.025
[24] PAN Zhengyang, HE Jiankun, SHAO Zhigang. Spatial variation in the present-day stress field and tectonic regime of northeast Tibet from moment tensor solutions of local earthquake data [J]. Geophysical Journal International, 2020(1): 478-491. DOI:10.1093/gji/ggaa013
[25] 潘裕生. 西藏的推覆构造及其意义[J]. 地质科学, 1980(1): 11-18. [PAN Yusheng. The nappe structure of Xizang and its geological significance [J]. Chinese Journal of Geology(Scientia Geologica Sinica), 1980(1): 11-18.
[26] WANG Min, SHEN Zhengkang. Present-day crustal deformation of continental China derived from GPS and its tectonic implications [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774. DOI:10.1029/2019jb018774
[27] GRANDIN R, DOIN M P, BOLLINGER L, et al. Long-term growth of the Himalaya inferred from interseismic InSAR measurement [J]. Geology, 2012, 40(12): 1059-1062. DOI:10.1130/g33154.1
[28] FU Yuning, FREYMUELLER J T. Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements [J]. Journal of Geophysical Research, 2012, 117: B03407. DOI:10.1029/2011JB008925

相似文献/References:

[1]张信宝,吴积善,汪阳春,等.川西北高原的地貌垂直地带性与寒冻夷平面[J].山地学报,2006,(05):607.
[2]张信宝.运用地貌垂直地带性理论判别庐山第四纪冰川有无[J].山地学报,2016,(02):129.[doi:10.16089/j.cnki.1008-2786.000109]
 ZHANG Xinbao.Discrimination of Quaternary Glaciation in the Lushan Mountain of East China by Using Vertical Geomorphology Zone Theory[J].Mountain Research,2016,(4):129.[doi:10.16089/j.cnki.1008-2786.000109]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023- 06- 05; 改回日期(Accepted date):2023- 07-15
基金项目(Foundation item): 国家自然科学基金川藏铁路重大基础科学问题专项(41941017); 国家自然科学基金面上项目(42071017)[National Natural Science Foundation of China Special Project on Major Basic Science of Sichuan-Tibet Railway(41941017); National Natural Science Foundation of China(42071017)]
作者简介(Biography): 张信宝(1946-),男,主要研究方向:山地环境、水土流失。[ZHANG Xinbao(1946-), male, research on mountain environment, soil and water loss] E-mail:zxbao@imde.ac.cn
更新日期/Last Update: 2023-07-30