[1]李以恒,唐科明*,陈柯霖,等.长江上游地区土壤理化性质对土壤侵蚀阻力的影响[J].山地学报,2023,(4):469-477.[doi:10.16089/j.cnki.1008-2786.000763 ]
 LI Yiheng,TANG Keming*,CHEN Kelin,et al.Effects of Soil Physicochemical Properties on the Erosion Resistance of Soil in the Upper Yangtze River of China[J].Mountain Research,2023,(4):469-477.[doi:10.16089/j.cnki.1008-2786.000763 ]
点击复制

长江上游地区土壤理化性质对土壤侵蚀阻力的影响
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第4期
页码:
469-477
栏目:
山地环境
出版日期:
2023-07-20

文章信息/Info

Title:
Effects of Soil Physicochemical Properties on the Erosion Resistance of Soil in the Upper Yangtze River of China
文章编号:
1008-2786-(2023)4-469-9
作者:
李以恒唐科明*陈柯霖吴怀雨康艺洋
(四川农业大学 水利水电学院,四川 雅安 625014)
Author(s):
LI YihengTANG Keming*CHEN KelinWU HuaiyuKANG Yiyang
(College of Water Conservancy and Hydropower Engineering, Sichuan Agriculture University, Ya'an 625014, Sichuan, China)
关键词:
土壤侵蚀 土壤理化性质 细沟可蚀性 临界剪切力 长江上游
Keywords:
soil erosion soil physicochemical properties rill erodibility critical shear stress the upper Yangtze River
分类号:
S157.1
DOI:
10.16089/j.cnki.1008-2786.000763
文献标志码:
A
摘要:
长江上游地区土壤侵蚀严重,其侵蚀阻力的影响因素尚不明确。分析土壤理化性质,准确确定土壤侵蚀阻力,将为当地水土流失治理提供依据。本文在长江上游水土流失重点区域选择10个样点采集坡耕地土壤,测量土壤理化性质,基于水槽试验测定土壤分离能力,通过线性回归得到样点的土壤细沟可蚀性和临界剪切力,采用统计分析方法确定土壤理化性质对土壤侵蚀阻力的影响,构建区域土壤侵蚀阻力与理化性质的定量关系,并与采用WEPP模型的土壤侵蚀阻力值进行比较。结果表明:(1)样点间土壤细沟可蚀性与临界剪切力差异较大。土壤细沟可蚀性为0.106~0.250 m·s-1,均值为0.158 m·s-1; 土壤临界剪切力为1.189~2.340 Pa,均值为1.597 Pa。(2)土壤细沟可蚀性与土壤极细砂含量和有机质含量呈显著相关关系,细沟可蚀性随极细砂含量的增加呈线性形式增大,随有机质含量的增大呈指数形式减小,实测值与WEPP模型预测值相比偏小。(3)土壤临界剪切力与土壤粉粒含量显著相关,随粉粒含量的增加线性减小,实测值与WEPP模型预测值相比偏大。研究结果可为长江上游地区坡耕地水土流失预报与治理提供数据支撑与理论依据。
Abstract:
Although soil erosion in the upper Yangtze River is extremely serious, the influencing factors of inherent soil resistance to soil erosion had been kept unclear, which prevented local authorities from efficient local soil-water loss control. Analyzing the influence of soil physicochemical properties on soil erosion resistance in the region can lead to accurate determination of soil erosion resistance and provide an instruction for water and soil conservation campaign. In this study, 10 sites on hillslope farmland were selected for soil sampling representative of the key soil and water loss areas in the upper Yangtze River of China, following by lab tests of soil physicochemical properties; it conducted in-door flume experiments for measurement of soil detachment capacity; then it obtained soil rill erodibility and critical shear stress at each sampling site by linear regression. Statistical analysis was used to quantify the effect of soil physicochemical properties on soil erodibility; then a region-scale quantitative correlation between soil erosion resistance and physicochemical properties was build suitable for the upper Yangtze River and calibrated with simulations obtained from a WEPP model. This research had the following results.(1)Soil rill erodibility and critical shear stress varied considerably according to sampling sites.The soil rill erodibility ranged from 0.106 to 0.250 m·s-1 at sampling sites, with a mean of 0.158 m·s-1. The critical shear stress ranged from 1.189 to 2.340 Pa at sampling sites, with a mean of 1.597 Pa.(2)Soil rill erodibility was significantly correlated with the content of very-fine-sand as well as organic matter in the soil. Measured soil rill erodibility increased linearly with the increase of very-fine-sand content and decreased exponentially with the increase of soil organic matter content, which were lower than the predicted values obtained from a WEPP model.(3)Measured soil critical shear stress was significantly correlated with soil silt content and decreased linearly with the increase of soil silt content, which was larger than the predicted values by the WEPP model. This research can provide data support and theoretical basis for soil and water loss prediction and control of sloping farmland in the upper Yangtze River of China.

参考文献/References:

[1] 张光辉, 卫海燕, 刘宝元. 坡面流水动力学特性研究[J]. 水土保持学报, 2001, 15(1): 58-61.[ZHANG Guanghui, WEI Haiyan, LIU Baoyuan. Study on hydro-dynamic properties of overland flow[J]. Journal of Soil and Water Conservation, 2001, 15(1): 58-61] DOI:10.13870/j.cnki.stbcxb.2001.01.016
[2] 郑粉莉, 唐克丽, 张科利, 等. 自然侵蚀和人为加速侵蚀与生态环境演变[J]. 生态学报, 1995, 15(3): 251-259.[ZHENG Fenli, TANG Keli, ZHANG Keli, et al. Relationship of eco-environmental change and natural erosion and man-made accelerated erosion[J]. Acta Ecologica Sinica, 1995, 15(3): 251-259] DOI:10.3321/j.issn: 1000-0933.1995.03.004
[3] GUO Tian, SRIVASTAVA A, FLANAGAN D C. Improving and calibrating channel erosion simulation in the Water Erosion Prediction Project(WEPP)model[J]. Journal of Environmental Management, 2021, 291: 112616. DOI:10.1016/j.jenvman.2021.112616
[4] 程圣东, 李占斌, 李强. 干热河谷地区土壤物理特性对土壤侵蚀的影响[J]. 水资源与水工程学报, 2008, 19(5): 38-41.[CHENG Shengdong, LI Zhanbin, LI Qiang. Effect of soil physical properties to soil erosion in dry and hot valley of Jinshajiang River[J]. Journal of Water Resources and Water Engineering, 2008, 19(5): 38-41] DOI:1672-643X(2008)05-0038
[5] KNAPEN A, POESEN J, DEBAETS S. Seasonal variations in soil erosion resistance during concentrated flow for a loess-derived soil under two contrasting tillage practices[J]. Soil and Tillage Research, 2007, 94(2): 425-440. DOI:10.1016/j.still.2006.09.005
[6] WANG Junguang, FENG Shuyue, NI Shimin, et al. Soil detachment by overland flow on hillslopes with permanent gullies in the Granite area of southeast China[J]. Catena, 2019, 183: 104235. DOI:10.1016/j.catena.2019.104235
[7] 王长燕, 郁耀闯. 黄土丘陵区不同草被类型土壤细沟可蚀性季节变化研究[J]. 农业机械学报, 2016, 47(8): 101-108.[WANG Changyan, YU Yaochuang. Seasonal variations of soil rill erodibility under different typesof grass in loess hilly region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 101-108] DOI:10.6041/j.issn.1000-1298.2016.08.014
[8] LI Zhenwei, ZHANG Guanghui, GENG Ren, et al. Rill erodibility as influenced by soil and land use in a small watershed of the Loess Plateau, China[J]. Biosystems Engineering, 2015, 129: 248-257. DOI:10.1016/j.biosystemseng.2014.11.002
[9] WANG Hao, ZHANG Guanghui, LI Ningning, et al. Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China[J]. Catena, 2019, 174: 24-35. DOI:10.1016/j.catena.2018.11.003
[10] GILLEY J E, ELLIOT W J, LAFLEN J M, et al. Critical shear stress and critical flow rates for initiation of rilling[J]. Journal of Hydrology, 1993, 142: 251-271. DOI:10.1016/0022-1694(93)90013-y
[11] 张信宝, 贺秀斌. 长江上游坡耕地整治成效分析[J]. 人民长江, 2010, 41(13): 21-23. [ZHANG Xinbao, HE Xiubin. Achievement of slope farm land regulation in upper Yangtze River[J]. Yangtze River, 2010, 41(13): 21-23] DOI:10.3969/j.issn.1001-4179.2010.13.005
[12] 顾朝军, 朱永清, 黄立文, 等. 长江流域水土流失变化及影响因素分析[J]. 中国防汛抗旱, 2022, 32(S1): 24-29.[GU Chaojun, ZHU Yongqing, HUANG Liwen, et al. Analysis of soil erosion changes and influencing factors in the Yangtze River Basin[J]. China Flood and Drought Management, 2022, 32(S1): 24-29] DOI:10.16867/j.issn.1673-9264.2022571
[13] 张靖宜. 三峡库区坡耕地土壤理化性质对土壤侵蚀阻力的影响[D]. 雅安: 四川农业大学, 2020: 23-28.[ZHANG Jinyi. Effects of soil physical and chemical properties on soil erosion resistance of sloping farmland in the Three Gorges Reservoir area[D]. Ya'an: Sichuan Agricultural University, 2020: 23-28] DOI:10.27345/d.cnki.gsnyu.2020.000988
[14] 洪焕. 三峡库区消落带(香溪郭家坝段)时空变化对土壤分离的影响因素研究[D]. 宜昌: 三峡大学, 2020: 13-16.[HONG Huan. A study on the influence factors of spatial and temporal variations on the soil detachment of the Three Gorges Reservoir area[D]. Yichang: Three Gorges University, 2020: 13-16] DOI:10.27270/d.cnki.gsxau.2020.000470
[15] 鲍士旦. 土壤农化分析[M].3版. 北京: 中国农业出版社, 2000: 30-33. [BAO Shidan. Soil agrochemical analysis [M]. 3rd ed.Beijing: China Agriculture Press, 2000: 30-33]
[16] 何海龙, 齐雁冰, 吕家珑, 等. 中国土壤质地分类系统的发展与建议修订方案[J]. 农业资源与环境学报, 2023, 40(3): 501-510.[HE Hailong, QI Yanbing, LYU Jialong, et al. Development and revision of the Chinese soil texture classification system[J]. Journal of Agricultural Resources and Environment, 2023, 40(3): 501-510] DOI:10.13254/j.jare.2022.0854
[17] 孙宝洋, 吴志广, 李占斌, 等. 冻融对土壤分离能力及侵蚀阻力的影响[J]. 农业工程学报, 2020, 36(11): 57-65.[SUN Baoyang, WU Zhiguang, LI Zhanbin, et al. Effects of freeze-thaw on soil detachment capacity and erosion resistance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 57-65] DOI:10.11975/j.issn.1002-6819.2020.11.007
[18] 张光辉, 刘宝元, 张科利. 坡面径流分离土壤的水动力学实验研究[J]. 土壤学报, 2002, 39(6): 882-886.[ZHANG Guanghui, LIU Baoyuan, ZHANG Keli. Experimental simulation of hydraulic mechanism of soil detachment by surface runoff on slopeland[J]. Acta Pedologica Sinica, 2002, 39(6): 882-886] DOI:10.3321/j.issn: 0564-3929.2002.06.015
[19] LANE L J, NEARING M A. USDA-water erosion prediction project: Hillslope profile model documentation[M]. West Lafayette: USDA-ARS National Soil Erosion Research Laboratory, 1989: 115-121.
[20] 何周窈, 苏正安, 王勇, 等. 干热河谷冲沟发育区土壤细沟可蚀性及主要影响因素[J]. 水土保持学报, 2020, 34(3): 8-13.[HE Zhouyao, SU Zheng'an, WANG Yong, et al. Erodibility and main influencing factors of soil rill in gully development area of dry-hot valley[J]. Journal of Soil and Water Conservation, 2020, 34(3): 8-13] DOI:10.13870/j.cnki.stbcxb.2020.03.002
[21] 张淑娟, 贺秀斌, 鲍玉海, 等.三峡水库消落带土壤团聚体微结构变化特征[J]. 山地学报, 2020, 38(3): 360-370.[ZHANG Shujuan, HE Xiubin, BAO Yuhai, et al. Change features of soil aggregate microstructure in the water-level fluctuation zone of the Three Gorges Reservoir, China[J]. Mountain Research, 2020, 38(3): 360-370] DOI:10.16089/j.cnki.1008-2786.000516
[22] 梁淑敏, 谢瑞芝, 汤永禄, 等. 不同耕作措施对成都平原稻麦轮作区土壤蓄水抗蚀性及产量的影响[J]. 中国水稻科学, 2014, 28(2): 199-205.[LIANG Shumin, XIE Ruizhi, TANG Yonglu, et al. Effect of different tillage systems on the corrosion resistance and water storage of soil and crop yield under rice-wheat rotation in Chengdu plain[J]. Chinese Journal of Rice Science, 2014, 28(2): 199-205] DOI:10.3969/j.issn.1001-7216.2014.02.012
[23] 陈爱民, 严思维, 林勇明, 等. 地震灾区生态治理初期土壤抗蚀性特征——以汶川地震典型区为例[J]. 山地学报, 2018, 36(1): 74-82.[CHEN Aimin, YAN Siwei, LIN Yongming, et al. Characteristics of soil anti-erodibility at the initial stage of ecological restoration in the earthquake affected regions[J]. Mountain Research, 2018, 36(1): 74-82] DOI:10.16089/j.cnki.1008-2786.000302
[24] GENG Ren, ZHANG Guanghui, MA Qianhong, et al. Soil resistance to runoff on steep croplands in Eastern China[J].Catena, 2017, 152: 18-28. DOI:10.1016/j.catena.2017.01.002
[25] TANG Yangbo, ZHU D Z, VANDUIN B. Erosion on cohesive deposition in storm sewers[J]. Journal of Environmental Engineering, 2020, 146(12): 04020136. DOI:10.1061/(asce)ee.1943-7870.0001824
[26] GENG Ren, ZHANG Guanghui, MA Qianhong, et al.Effects of landscape positions on soil resistance to rill erosion in a small catchment on the Loess Plateau[J].Biosystems Engineering, 2017, 160: 95-108. DOI:10.1016/j.biosystemseng.2017.06.001

相似文献/References:

[1]刘淑珍,刘斌涛,苏正安,等.对我国水土流失调查评价方法若干问题的思考[J].山地学报,2014,(02):150.
 LIU Shuzhen,LIU Bintao,SU Zhengan,et al.Thoughts on the Methods of Soil and Water Loss Survey and Evaluation in China[J].Mountain Research,2014,(4):150.
[2]黄凤琴,第宝锋,黄成敏,等.基于日降雨量的年均降雨侵蚀力估算模型及其应用——以四川省凉山州为例[J].山地学报,2013,(01):55.
 HUANG Fengqin,DI Baofeng,HUANG Chengmin,et al.Spatial Distribution of Soil Erosion in Liangshan, Sichuan Based on a New Equationto Estimate the Rainfall Erosivity[J].Mountain Research,2013,(4):55.
[3]严冬春,文安邦,史忠林,等.紫色土坡面水流跌坑形态特征及其成因[J].山地学报,2012,(01):30.
 YAN Dongchun,WEN Anbang,SHI Zhonglin,et al.Configuration Characteristic and Cause of Drop-Pit Development on Purple Slopeland[J].Mountain Research,2012,(4):30.
[4]司渤洋,第宝锋,张斌,等.基于GIS的汶川地震灾区小流域土壤侵蚀评价——以彭州龙门山区为例[J].山地学报,2011,(04):433.
 SI Boyang,DI Baofeng,ZHANG Bin,et al.Evaluation of Soil Erosion Based on GIS in a Small Watershed in Wenchuan Seismic Disaster Area——A Case Study of Longmen Mountain Areas in Pengzhou City[J].Mountain Research,2011,(4):433.
[5]陈学华,周建中.基于GIS和RS的四川省彭州市土壤侵蚀敏感性评价[J].山地学报,2011,(06):707.
 CHEN Xuehua,ZHOU Jianzhong.Soil Erosion Sensitivity Evaluation on Pengzhou in Sichuan Province Based on RS and GIS[J].Mountain Research,2011,(4):707.
[6]柴宗新.试论广西岩溶区的土壤侵蚀[J].山地学报,1989,(04):255.
[7]文安邦,张信宝,张一云,等.黄土峁坡耕地土壤侵蚀与泥沙输移[J].山地学报,1995,(02):85.
[8]柴宗新.试论土地侵蚀[J].山地学报,1996,(02):117.
[9]杨子生.滇东北山区坡耕地土壤侵蚀的作物经营因子[J].山地学报,1999,(S1):20.
[10]杨子生.滇东北山区坡耕地土壤侵蚀的水土保持措施因子[J].山地学报,1999,(S1):23.

备注/Memo

备注/Memo:
收稿日期(Received date): 2023- 06- 09; 改回日期(Accepted date):2023- 08-15
基金项目(Foundation item): 国家自然科学基金(41601288); 四川省大学生创新训练计划项目(S202210626100)。[National Nature Science Foundation of China(41601288); Sichuan Province College Student Innovation Training Program(S20220626100)]
作者简介(Biography): 李以恒(1997-),男,湖北随州人,硕士研究生,主要研究方向:农业资源与环境。[LI Yiheng(1997-), male, born in Suizhou, Hubei province, M.Sc. candidate, research on agricultural resources and environment] E-mail: 874032150@qq.com.
*通讯作者(Corresponding author): 唐科明(1981-),男,四川广安人,博士,副教授,主要研究方向:土壤侵蚀与水土保持。[TANG Keming(1981-), male, born in Guang'an, Sichuan province, Ph.D., associate professor, research on soil erosion and soil and water conservation] E-mail: tangkeming1981@126.com
更新日期/Last Update: 2023-07-30