HE Junbo,WU Yanhong*.Overview of Soil Phosphorus Dynamics Using Soil Chronosequences: Progress and Prospects[J].Mountain Research,2022,(6):801-810.[doi:10.16089/j.cnki.1008-2786.000714]





Overview of Soil Phosphorus Dynamics Using Soil Chronosequences: Progress and Prospects
(1. 中国科学院、水利部成都山地灾害与环境研究所,成都 610299; 2. 中国科学院大学,北京 100049)
HE Junbo12WU Yanhong1*
(1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Resources, Chengdu 610299, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
土壤时间序列 成土作用 生物地球化学循环 土壤磷 生物有效磷
chronosequences pedogenesis biogeochemical cycle soil phosphorus bioavailable phosphorus
Phosphorus(P)is an essential nutrient for plant growth, and dominates the stability of terrestrial ecosystems. Changes in P content in soils are primarily governed by rock weathering and pedogenesis. Investigations into the process of soil formation using chronosequences and its dynamics has been an research highlight in soil science for recent years.In this study, it tried to sketch out the research achievements on soil P dynamics; it addressed the types of chronosequences and the updates relative to soil P dynamics using chronosequences. According to the overview of soil phosphorus dynamics, the following research prospect and emphasis are concluded.(1)In the case of constructing a chronosequence, more attentions should focus attention on the phase of soil development, as well as on the dominant factors which drive soil evolution. A integrated research on the drivers along with soil development time should be made to properly chronicle the chronosequences.(2)As applying chronosequences to study the changes in soil P, the changes in bioavailable P should be traced by with inclusion of the succession of vegetation and the structural adaption in microbial community.(3)It is also necessary to investigate the migration and transformation of other nutrient elements, such as carbon(C)and nitrogen(N), for their effects on soil P during pedogenesis.


[1] SHINA C L K, PANKAZ K S, RAM B P, et al. Why nature really chose phosphate [J]. Science, 1987, 235(4793): 1173-1178. DOI: 10.1126/science.2434996
[2] WATANABE M D B, ORTEGA E. Ecosystem services and biogeochemical cycles on a global scale: Valuation of water, carbon and nitrogen processes [J]. Environmental Science and Policy, 2011, 14(6): 594-604. DOI: 10.1016/j.envsci.2011.05.013
[3] NAJAM A, RAHMAN A A, HUQ S, et al. Integrating sustainable development into the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [J]. Climate Policy, 2003, 3(1): S9-S17. DOI: 10.1016/j.clipol.2003.10.003
[4] Hedley M J, Stewart J W B. Method to measure microbial phosphate in soils[J]. Soil Biology and Biochemistry, 1982, 14(4), 377-385. DOI: 10.1016/0038-0717(82)90009-8
[5] JOHNSON A H, FRIZANO J, VANN D R. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure [J]. Oecologia, 2003, 135(4): 487-499. DOI: 10.1007/s00442-002-1164-5
[6] 吴艳宏, PRIETZEL J, 周俊, 等. 两种形态分析方法对冰川退缩时间序列土壤中磷的生物有效性评价[J]. 中国科学. 地球科学, 2014, 57(15): 1860-1868. [WU Yanhong, PRIETZEL J, ZHOU Jun, et al. Soil phosphorus bioavailability assessed by XANES and Hedley sequential fractionation technique in a glacier foreland chronosequence in Gongga Mountain, southwestern China [J]. Science China Earth Sciences, 2014, 57(15): 1860-1868] DOI: 10.1007/s11430-013-4741-z
[7] ACHAT D L, BAKKER M R, MOREL C. Process-based assessment of phosphorus availability in a low phosphorus sorbing forest soil using isotopic dilution methods [J]. Soil Science Society of America Journal, 2009, 73(6): 2131-2142. DOI: 10.2136/sssaj2009.0009
[8] PRIETZEL J, KLYSUBUN W. Phosphorus K-edge XANES spectroscopy has probably often underestimated iron oxyhydroxide-bound P in soils [J]. Journal of Synchrotron Radiation, 2018, 25(6): 1736-1744. DOI: 10.1107/S1600577518013334
[9] 王吉鹏, 吴艳宏. 磷的生物有效性对山地生态系统的影响[J]. 生态学报, 2016, 36(5): 1204-1214. [WANG Jipeng, WU Yanhong. Phosphorus bioavailability in mountain ecosystems: Characteristics and ecological roles [J]. Acta Ecologica Sinica, 2016, 36(5): 1204-1214] DOI: 10.5846/stxb201407111421
[10] WU Yanhong, ZHOU Jun, YU Dong, et al. Phosphorus biogeochemical cycle research in mountainous ecosystems[J]. Journal of Mountain Science, 2013, 10(1): 43-53. DOI: 10.1007/s11629-013-2386-1
[11] FILIPPELLI G M. The global phosphorus cycle: Past, present and future [J]. Elements, 2008, 4(2): 89-95. DOI: 10.2113/GSELEMENTS.4.2.89
[12] 周俊. 海螺沟冰川退缩迹地风化——成土过程与土壤磷形态研究[D]. 成都: 中国科学院、水利部成都山地灾害与环境研究所, 2014: 3-11. [ZHOU Jun. Weathering, pedogenesis and changes of soil phosphorus speciation of Hailuogou Glacier foreland chronosequence [D]. Chengdu: Institute of Mountain Hazards and Environment, CAS, 2014: 3-11]
[13] SMAL H, LIGEZA S, PRANAGAL J, et al. Changes in the stocks of soil organic carbon, total nitrogen and phosphorus following afforestation of post-arable soils: A chronosequence study [J]. Forest Ecology and Management. 2019, 451: 117536. DOI: 10.1016/j.foreco.2019.117536
[14] FEITOSA M M, SILVA Y J A B, BIONDI C M, et al. Rare Earth elements in rocks and soil profiles of a tropical volcanic archipelago in the Southern Atlantic [J]. Catena, 2020, 194: 104674. DOI: 10.1016/j.catena.2020.104674
[15] 朱大运, 王建力. 青藏高原冰芯重建古气候研究进展分析[J]. 地理科学进展, 2013, 32(10): 1535-1544. [ZHU Dayun, WANG Jianli. Progress in palaeoclimate research on the Tibet Plateau based on ice core records [J]. Progress in Geography, 2013, 32(10): 1535-1544] DOI: 10.11820/dlkxjz.2013.10.011
[16] IVANOVA E A, PERSHINA E V, SHAPKIN V M, et al. Shifting prokaryotic communities along a soil formation chronosequence and across soil horizons in a South Taiga ecosystem [J]. Pedobiologia-Journal of Soil Ecology, 2020, 81-82: 150650. DOI: 10.1016/j.pedobi.2020.150650
[17] HARDEN J W. A quantitative index of soil development from field descriptions: Examples from a chronosequence in central California [J]. Geoderma, 1982, 28: 1-28. DOI: 10.1016/0016-7061(82)90037-4
[18] VINCENT K R, BULL W B, CHADWICK O A. Construction of a soil chronosequence using the thickness of pedogenic carbonate coatings[J]. Journal of Geological Education, 1994, 42(4): 316-324. DOI: 10.5408/0022-1368-42.4.316
[19] MOHAMMED A K, HIRMAS D R, NEMES A, et al. Exogenous and endogenous controls on the development of soil structure [J]. Geoderma, 2020,357: 113945. DOI: 10.1016/j.geoderma.2019.113945
[20] SCHINDLER M, MICHEL S, BATCHELDOR D, et al. A nanoscale study of the formation of Fe-(hydr)oxides in a volcanic regolith: Implications for the understanding of soil forming processes on Earth and Mars [J]. Geochimica et Cosmochimica Acta, 2019, 264: 43-66. DOI: 10.1016/j.gca.2019.08.008
[21] BOCKHEIM J G. Solution and use of chronofunctions in studying soil development [J]. Geoderma, 1980, 24: 71-85. DOI: 10.1016/0016-7061(80)90035-X
[22] CHODAK M, PIETRZYKOWSKI M, NIKLINSKA M. Development of microbial properties in a chronosequence of sandy mine soils [J]. Applied Soil Ecology, 2009, 41(3): 259-268. DOI: 10.1016/j.apsoil.2008.11.009
[23] EVANS D L, QUINTON J N, TYE A M, et al. How the composition of sandstone matrices affects rates of soil formation [J]. Geoderma, 2021, 401: 115337. DOI: 10.1016/j.geoderma.2021.115337
[24] BEILKE A J, BOCKHEIM J G. Carbon and nitrogen trends in soil chronosequences of the Transantarctic Mountains [J]. Geoderma. 2013, 197-198: 117-125. DOI: 10.1016/j.geoderma.2013.01.004
[25] JENNY H, ARKLEY R J, SCHULTZ A M. The pygmy forest-podsol ecosystem and its dune associates of the Mendocino Coast [J]. Madrono 1969, 20: 60-74.
[26] VREEKEN W J. Principal kinds of chronosequences and their significance in soil history [J]. Soil Science, 1975, 26(4): 378-394. DOI: 10.1111/j.1365-2389.1975.tb01962.x
[27] SAMOUËLIAN A and CORNU S. Modelling the formation and evolution of soils, towards an initial synthesis [J]. Geoderma, 2008, 145(3-4): 401-409. DOI: 10.1016/j.geoderma.2008.01.016
[28] SCHAETZL R J, BARRETT L R, WINKLER J A. Choosing models for soil chronofunctions and fitting them to data [J]. European Journal of Soil Science, 1994, 45: 219-232. DOI: 10.1111/j.1365-2389.1994.tb00503.x
[29] YEMEFACK M, ROSSITER D G, JETTEN V G. Empirical modelling of soil dynamics along a chronosequence of shifting cultivation systems in southern Cameroon [J]. Geoderma, 2006, 133(3-4): 380-397. DOI: 10.1016/j.geoderma.2005.08.003
[30] EPPES M C, BIERMA R, VINSON D, et al. A soil chronosequence study of the Reno valley, Italy: Insights into the relative role of climate versus anthropogenic forcing on hillslope processes during the mid-Holocene [J]. Geoderma, 2008, 147(3-4): 97-107. DOI: 10.1016/j.geoderma.2008.07.011
[31] EGLI M, FITZE P, MIRABELLA A. Weathering and evolution of soils formed on granitic, glacial deposits: Results from chronosequences of Swiss alpine environments [J]. Catena, 2001, 45: 19-47. DOI: 10.1016/S0341-8162(01)00138-2
[32] BIRKELAND P W. Soil-geomorphic research-a selective overview [J]. Geomorphology, 1990, 3: 207-224. DOI: 10.1016/0169-555X(90)90004-A
[33] HAUGLAND J E, HAUGLAND B S O. Cryogenic disturbance and pedogenic lag effects as determined by the profile developmental index: The styggedalsbreen glacier chronosequence, Norway [J]. Geomorphology, 2008, 96(1-2): 212-220.
[34] SCARCIGLIA F, PELLE T, PULIVE I, et al. A comparison of Quaternary soil chronosequences from the Ionian and Tyrrhenian coasts of Calabria, southern Italy: Rates of soil development and geomorphic dynamics [J]. Quaternary International, 2015, 376: 146-162. DOI: 10.1016/j.quaint.2014.01.009
[35] HUGGETT R J. Soil chronosequences, soil development, and soil evolution: A critical review [J]. Catena, 1998, 32: 155-172. DOI: 10.1016/S0341-8162(98)00053-8
[36] CORNU S, MONTAGNE D, VASCONCELOS P M. Dating constituent formation in soils to determine rates of soil processes: A review [J]. Geoderma, 2009, 153(3-4): 293-303. DOI: 10.1016/j.geoderma.2009.08.006
[37] WALKER T W, SYERS J K. The fate of phosphorus during pedogenesis [J]. Geoderma, 1976, 15: 1-19. DOI: 10.1016/0016-7061(76)90066-5
[38] CREWS T E, KITAYAMA K, FOWNES J H, et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii [J]. Ecology, 1995, 76(5): 1407-1424. DOI: 10.2307/1938144
[39] SELMANTS P C, HART S C. Phosphorus and soil development: Does the walker and syers model apply to semiarid ecosystems? [J]. Ecology, 2010, 91(2): 474-484. DOI: 10.1890/09-0243.1
[40] IZQUIERDO J E, HOULTON B Z, VAN HUYSEN T L. Evidence for progressive phosphorus limitation over long-term ecosystem development: Examination of a biogeochemical paradigm [J]. Plant Soil, 2013, 367: 135-147. DOI: 10.1007/s11104-013-1683-3
[41] TURNER B L, CONDRON L M, WELLS A, et al. Soil nutrient dynamics during podzol development under lowland temperature rain forest in New Zealand [J]. Catena, 2012, 97: 50-62. DOI: 10.1016/j.catena.2012.05.007
[42] TURNER B L, LALIBERT? E. Soil development and nutrient availability along a 2 million-year coastal dune chronosequence under species-rich mediterranean shrubland in Southwestern Australia [J]. Ecosystems, 2015, 18(2): 287-309. DOI: 10.1007/s10021-014-9830-0
[43] WU Yanhong, ZHOU Jun, BING Haijian, et al. Rapid loss of phosphorus during early pedogenesis along a glacier retreat choronosequence, Gongga Mountain(SW China)[J]. PeerJ, 2015, 3: e1377. DOI: 10.7717/peerj.1377
[44] VINDUKOV O, PNEK T, FROUZ J. Soil C, N and P dynamics along a 13 ka chronosequence of landslides under semi-natural temperate forest [J]. Quaternary Science Reviews, 2019, 213: 18-29. DOI: 10.1016/j.quascirev.2019.04.001
[45] XIAO Rong, BAI Junhong, ZHANG Honggang, et al. Changes of P, Ca, Al and Fe contents in fringe marshes along a pedogenic chronosequence in the Pearl River estuary, South China [J]. Continental Shelf Research, 2011, 31(6): 739-747. DOI: 10.1016/j.csr.2011.01.013
[46] 何清清, 邴海健, 吴艳宏, 等. 海螺沟冰川退缩区土壤元素分布特征及影响因素[J]. 山地学报, 2017, 35(5): 698-708. [HE Qingqing, BING Haijian, WU Yanhong, et al. Distribution characteristics and influencing factors of soil elements in the retreated area of Hailuogou Glacier, SW China [J]. Mountain Research, 2017, 35(5): 698-708] DOI: 10.16089/j.cnki.1008-2786.000269
[47] EGER A, ALMOND P C, CONDRON L M. Pedogenesis, soil mass balance, phosphorus dynamics and vegetation communities across a Holocene soil chronosequence in a super-humid climate, South Westland, New Zealand [J]. Geoderma, 2011, 163(3-4): 185-196. DOI: 10.1016/j.geoderma.2011.04.007
[48] VITOUSEK P M, FARRINGTON H. Nutrient limitation and soil development: Experimental test of a biogeochemical theory [J]. Biogeochemistry, 1997, 37(1): 63-75. DOI: 10.1023/A:1005757218475
[49] MAVRIS C, EGLI M, PLOTZE M, et al. Initial stages of weathering and soil formation in the Morteratsch proglacial area(Upper Engadine, Switzerland)[J]. Geoderma, 2010, 155: 359-371. DOI: 10.1016/j.geoderma.2009.12.019
[50] CELI L, CERLI C, TURNER B L, et al. Biogeochemical cycling of soil phosphorus during natural revegetation of Pinus sylvestris on disused sand quarries in Northwestern Russia [J]. Plant Soil, 2013, 367: 121-134. DOI: 10.1007/s11104-013-1627-y
[51] SCHLESINGER W H, BRUIJNZEEL L A, BUSH M B, et al. The biogeochemistry of phosphorus after the first century of soil development on Rakata Island, Krakatau, Indonesia [J]. Biogeochemistry, 1998, 40(1): 37-55. DOI: 10.1023/A:1005838929706
[52] EGER A, YOO K, ALMOND P C, et al. Does soil erosion rejuvenate the soil phosphorus inventory? [J]. Geoderma, 2018, 332: 45-59. DOI: 10.1016/j.geoderma.2018.06.021
[53] ZHOU Jun, WU Yanhong, JORG P, et al. Changes of soil phosphorus speciation along a 120-year soil choronosequence in the Hailuogou Glacier retreat area(Gongga Mountain, SW China)[J]. Geoderma, 2013, 195-196: 251-259. DOI: 10.1016/j.geoderma.2012.12.010
[54] EGLI M, FILIP D, MAVRIS C, et al. Rapid transformation of inorganic to organic and plant-available phosphorous in soils of a glacier forefield [J]. Geoderma, 2012, 189-190: 215-226. DOI: 10.1016/j.geoderma.2012.06.033
[55] CHEN C R, HOU E Q, CONDRON L M, et al. Soil phosphorus fractionation and nutrient dynamics along the Cooloola coastal dune chronosequence, southern Queensland, Australia [J]. Geoderma, 2015, 10: 11986. DOI: 10.1016/j.geoderma.2015.04.027
[56] GARDNER L R. The role of rock weathering in the phosphorus budget of terrestrial watersheds [J]. Biogeochemistry, 1990, 11(2): 97-110. DOI: 10.1007/bf00002061
[57] ZHOU Jun, BING Haijian, WU Yanhong, et al. Weathering of primary mineral phosphate in the early stages of ecosystem development in the Hailuogou Glacier foreland chronosequence [J]. European Journal of Soil Science, 2018, 69: 450-461. DOI: 10.1111/ejss.12536
[58] OHNO T, AMIRBAHMAN A. Phosphorus availability in boreal forest soils: A geochemical and nutrient uptake modeling approach [J]. Geoderma, 2010, 155(1-2): 46-54. DOI: 10.1016/j.geoderma.2009.11.022
[59] ROBERTS K, DEFFOREY D, TURNER B L, et al. Oxygen isotopes of phosphate and soil phosphorus cycling across a 6500 year chronosequence under lowland temperate rainforest [J]. Geoderma, 2015, 257-258: 14-21. DOI: 10.1016/j.geoderma.2015.04.010
[60] KANA J, KOPACEK J, CAMARERO L, et al. Phosphate sorption characteristics of European Alpine soils [J]. Soil Sci. Soc. Am. J., 2011, 75(3): 862-870. DOI: 10.2136/sssaj2010.0259
[61] 隋玉柱. 从彭阳剖面看黄土成壤模式及气候变化[D]. 兰州: 兰州大学, 2007. [SUI Yuzhu. The soil-forming mode and paleoclimatic changes of Pengyang loess section [D]. Lanzhou: Lanzhou University, 2007] DOI: 10.1016/j.quaint.2021.08.003
[62] HARDEN J W, TAYLOR E M. A quantitative comparison of soil development in four climatic regimes [J]. Quaternary Research, 1983, 20: 342-359. DOI: 10.1016/0033-5894(83)90017-0
[63] BOCKHEIM J G. Soil development rates in the Transantarctic Mountains [J]. Geoderma, 1990, 47: 59-77. DOI: 10.1016/0016-7061(90)90047-D
[64] KHOKHLOVA O S, KHOKHLOV A A, OLEYNIK S A, et al. Paleosols from the groups of burial mounds provide paleoclimatic records of centennial to intercentennial time scale: A case study from the Early Alan cemeteries in the Northern Caucasus(Russia)[J]. Catena, 2007, 71: 477-486. DOI: 10.1016/j.catena.2007.03.013
[65] SUN Feng, SONG Chengjun, WANG Mei, et al. Long-term increase in rainfall decreases soil organic phosphorus decomposition in tropical forests [J]. Soil Biology and Biochemistry, 2020, 151: 107959. DOI: 10.1016/j.soilbio.2020.108056
[66] MILLER A J, SCHUUR E A G, CHADWICK O A. Redox control of phosphorus pools in Hawaiian montane forest soils [J]. Geoderma, 2001, 102(3-4): 219-237. DOI: 10.1016/S0016-7061(01)00016-7
[67] TATE K R. The Biological Transformation of P in Soil[J]. Plant and Soil, 1984, 76: 245-256. DOI: 10.1007/BF02205584
[68] BOLAN N S. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants [J]. Plant Soil, 1991, 134(2): 189-207. DOI: 10.1007/BF00012037
[69] RICHARDSON A E, LYNCH J P, RYAN P R, et al. Plant and microbial strategies to improve the phosphorus efficiency of agriculture [J]. Plant Soil, 2011, 349(1-2): 121-156. DOI: 10.1007/s11104-011-0950-4
[70] PRIETZEL J, DUMIG A, WU Yanhong, et al. Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences [J]. Geochimica et Cosmochimica Acta, 2013, 108: 154-171. DOI: 10.1016/j.gca.2013.01.029
[71] DEVAU N, LE CADRE E, HINSINGER P, et al. Soil pH controls the environmental availability of phosphorus: Experimental and mechanistic modelling approaches [J]. Applied Geochemistry, 2009, 24(11): 2163-2174. DOI: 10.1016/j.apgeochem.2009.09.020
[72] RICHARDSON A E, SIMPSON R J. Soil microorganisms mediating phosphorus availability [J]. Plant Physiology, 2011, 156(3): 989-996. DOI: 10.1104/pp.111.175448
[73] IPPOLITO J A, BLECKER S W, Freeman C L, et al. Phosphorus biogeochemistry across a precipitation gradient in grasslands of central North America [J]. Journal of Arid Environments, 2010, 74(8): 954-961. DOI: 10.1016/j.jaridenv.2010.01.003
[74] JOBBAGY E G, JACKSON R B. The distribution of soil nutrients with depth: Global patterns and the imprint of plants [J]. Biogeochemistry, 2001, 53(1): 51-77. DOI: 10.1023/A:1010760720215
[75] PORDER S, CHADWICK O A. Climate and soil-age constraints on nutrient uplift and retention by plants [J]. Ecology, 2009, 90(3): 623-636. DOI: 10.1890/07-1739.1
[76] 舒世燕, 王克林, 张伟, 等. 喀斯特峰丛洼地植被不同演替阶段土壤磷酸酶活性[J]. 生态学杂志, 2010, 29(9): 1722-1728. [SHU Shiyan, WANG Kelin, ZHANG Wei, et al. Soil alkaline phosphatase activity at different vegetation succession stages in karst peak-cluster depression [J]. Chinese Journal of Ecology, 2010, 29(9): 1722-1728] DOI: 10.13292/j.1000-4890.2010.0313
[77] 胡忠良. 贵州中部喀斯特山区不同植被下土壤养分与微生物功能变化研究[D]. 南京: 南京农业大学, 2009: 11-16. [HU Zhongliang. The change of soil nutrients and microbial functions under different vegetation in karst mountains area, central Guizhou province [D]. Nanjing: Nanjing Agricultural University, 2009: 11-16] DOI: 10.1016/j.agee.2016.02.020
[78] HEDDE M, AUBERT M, DECA?NS T, et al. Dynamics of soil carbon in a beechwood chronosequence forest [J]. Forest Ecology and Management, 2008, 255(1): 193-202. DOI: 10.1016/j.foreco.2007.09.004
[79]MA Qingxu, WEN Yuan, MA Jinzhao, et al. Long-term farmyard manure application affects soil organic phosphorus cycling: A combined metagenomic and 33P/14C labelling study [J]. Soil Biology and Biochemistry, 2020, 149: 107959. DOI: 10.1016/j.soilbio.2020.107959
[80] ZHANG Yaqi, FINN D, BHATTACHARYYA R, et al. Long-term changes in land use influence phosphorus concentrations, speciation, and cycling within subtropical soils [J]. Geoderma, 2021, 393: 115010. DOI: 10.1016/j.geoderma.2021.115010
[81] VITOUSEK P M, PORDER S, HOULTON B Z, et al. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions [J]. Ecological Applications, 2010, 20(1): 5-15. DOI: 10.1890/08-0127.1
[82] LAL R. Soil carbon sequestration to mitigate climate change [J]. Geoderma, 2004, 123: 1-22. DOI: 10.1016/j.geoderma.2004.01.032
[83] WARDLE D A, WALKER L R, BARDGETT R D, et al. Ecosystem properties and forest decline in contrasting long-term chronosequences [J]. Science, 2004, 305(5683): 509-513. DOI: 10.1126/science.1109723
[84] LUGO A E, BROWN S. Management of tropical soils as sinks or sources of atmospheric carbon [J]. Plant Soil, 1993, 149: 27-41. DOI: 10.1007/BF00010760
[85] POST W M, KWON K C. Soil carbon sequestration and land-use change: Processes and potential [J]. Global Change Biology, 2000, 6: 317-327. DOI: 10.1046/j.1365-2486.2000.00308.x
[86] POEPLAU C, DON A, VESTERDAL L, et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone-carbon response functions as a model approach [J]. Global Change Biology, 2011, 17: 2415-2427. DOI: 10.1111/j.1365-2486.2011.02408.x


收稿日期(Received date):2022-06-14; 改回日期(Accepted date):2022-12-13
基金项目(Foundation item): 四川省重点研发项目(2018JZ0075); 中国科学院对外合作重点项目(131551KYSB20190028)。[Sichuan Province Key R&D Projects(2018JZ0075); Key Program of the Chinese Academy of Sciences for International Cooperation(131551KYSB20190028)]
作者简介(Biography): 何俊波(1993-),男,四川南充人,博士研究生,主要研究方向:土壤养分元素的生物地球化学循环。[HE Junbo(1993-), male, born in Nachong, Sichuan province, Ph.D. candidate, research on the biogeochemical cycling of soil nutrient elements] E-mail: hejunbo@imde.ac.cn
*通讯作者(Corresponding author): 吴艳宏(1969-),男,博士,研究员,主要研究方向:自然地理学。[WU Yanhong(1969-), male, Ph.D., professor, specialized in physical geography] E-mail: yhwu@imde.ac.cn
更新日期/Last Update: 2022-12-30