[1]余忠水,陈 华,德吉白玛,等.基于ERA-Interim的青藏高原近40年云量的时空分布特征[J].山地学报,2022,(6):811-822.[doi:10.16089/j.cnki.1008-2786.000715]
 YU Zhongshui,CHEN Hua,DEJI Baima,et al.Spat-Temporal Distribution of the Cloud Amount in the Qinghai-Tibet Plateau of China for the Past 40 Years Based on ERA-Interim[J].Mountain Research,2022,(6):811-822.[doi:10.16089/j.cnki.1008-2786.000715]
点击复制

基于ERA-Interim的青藏高原近40年云量的时空分布特征()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第6期
页码:
811-822
栏目:
山地环境
出版日期:
2022-12-20

文章信息/Info

Title:
Spat-Temporal Distribution of the Cloud Amount in the Qinghai-Tibet Plateau of China for the Past 40 Years Based on ERA-Interim
文章编号:
1008-2786-(2022)6-811-12
作者:
余忠水1陈 华2德吉白玛3高佳佳1*卓 嘎1刘俊卿3
(1.西藏高原大气环境科学研究所,拉萨 850000; 2.西藏自治区大气探测技术与装备保障中心,拉萨 850000; 3.西藏自治区人工影响天气中心,拉萨 850000)
Author(s):
YU Zhongshui1 CHEN Hua2 DEJI Baima3 GAO Jiajia1* ZHUO Ga1 LIU Junqing3
(1. Tibet Institute of Plateau Atmospheric and Environmental Science, Lhasa 850000, China; 2. Tibet Atmospheric Detection Technology and Equipment Support Center, Lhasa 850000,China; 3. Tibet Weather Modification Center, Lhasa 850000, China)
关键词:
青藏高原 云量 时空分布 气候特征 ERA-Interim
Keywords:
the Qinghai-Tibet Plateau cloud amount spatial-temporal distribution climatic characteristics ERA-Interim
分类号:
P466
DOI:
10.16089/j.cnki.1008-2786.000715
文献标志码:
A
摘要:
青藏高原云量变化直接影响对流层中上部地气系统能量交换和大气水分循环,影响区域和全球气候。已有研究主要集中在总云量,鲜见对云量进行全要素分析,无法形成对青藏高原云量变化特征的全面认识。本文利用欧洲中期数值预报中心(ECMWF)1979—2018年高水平分辨率ERA-Interim再分析资料,采用区域平均法、线性趋势分析和经验正交函数(EOF)等方法,分析青藏高原云量全要素的时空分布及气候特征。结果表明:(1)受高原大地形和山脉走向的影响,青藏高原云量具有明显的空间分布特征,且低云量对总云量的空间分布型贡献最大。(2)近40年,总云量增多趋势显著的区域主要分布在青藏高原北部和东部边缘等地,减少趋势较明显的区域主要分布在西藏东部和西南部; 高云量在高原南部有显著增加趋势,其他区域增减不明显; 中云量在高原中部呈减少趋势,北部和南部边缘呈显著增多趋势; 低云量在高原东南部和西南部呈显著减少趋势,其他大部分区域呈增多趋势。(3)总云量和高云量第一空间模态均表现为青藏高原大部区域一致性变化,中云量和低云量在青藏高原均没有显著一致变化的空间模态。研究结果可以为应对青藏高原气候变化和生态修复型人工影响天气业务规划提供科学依据。
Abstract:
Changes in cloud cover of the Qinghai-Tibet Plateau directly affects the energy exchange and atmospheric moisture circulation of the upper-mid tropospheric geo-gas system, and consequently affects both regional and global climate. Past studies mainly concerned about total cloud cover, scarcely relative to the total factor analysis of cloud cover, resulting in an incomplete knowledge of the pattern of cloud cover changes in the Qinghai-Tibet Plateau. In this paper, the spat-temporal distribution and climate characteristics of the total factor of cloud cover in the Qinghai-Tibet Plateau were analyzed by using the high-level resolution ERA-Interim reanalysis data of 1979-2018 obtained from the European Center for Medium-Term Numerical Forecast(ECMWF), using the methods of regional average, linear trend analysis and empirical orthogonal function(EOF).Results show that:(1)Due to the influence of the plateau topography and the mountain tendency, the cloud cover over the Qinghai-Tibet Plateau showed obvious spatial distribution characteristics, and the low cloud cover contributed the most to the spatial distribution pattern of the total cloud cover.(2)In the past 40 years, the regions with a significant increase tendency in total cloud cover were mainly distributed in northern and eastern margins of the Qinghai-Tibet Plateau, whereas the regions with a significant decrease tendency were mainly distributed in eastern and southwestern parts of Tibet; high cloud cover had a significant increase tendency in southern part of the plateau, whereas the increase and decrease in other regions were not obvious; the medium cloud cover decreased in the central part of the plateau, and increased significantly in northern and southern regions; low cloud cover decreased significantly in the southeast and southwest of the plateau, and increased in most other regions.(3)The first spatial mode of total cloud cover and high cloud cover showed consistent variation in most regions of the Qinghai-Tibet Plateau, whereas the spatial mode of medium cloud cover and low cloud cover had no significant consistent change in the Qinghai-Tibet Plateau. The research results can provide scientific basis for the climate change of the Qinghai-Tibet Plateau and the operational planning of weather modification for ecological restoration.

参考文献/References:

[1] 李义华, 韩志刚,姚志刚,等. 青藏高原及周边地区云气候特征[J]. 科学技术与工程, 2011,11(33): 8145-8148. [LI Yihua, HAN Zhigang, YAO Zhigang, et al. Characteristics of cloud climatology over the Tibetan Plateau and its neighborhood [J]. Science Technology and Engineering, 2011,11(33): 8145-8148 ] DOI: 10.3969/j.issn.1671-1815.2011.33.010
[2] 魏丽,钟强. 青藏高原云的气候学特征[J]. 高原气象, 1997,16(1): 11-16. [WEI Li, ZHONG Qiang. Characteristics of cloud climatology over Qinghai-Xizang Plateau [J]. Plateau Meteorology, 1997,16(1): 11-16]
[3] 余忠水,拉巴,周洪莉. 等. 近40年西藏高原云量与降水分布及耦合变化特征[J]. 西藏科技, 2018(9): 49-55+59. [YU Zhongshui, LA Ba, ZHOU Hongli, et al. Distribution and coupling changes of cloud cover and precipitation on Tibet Plateau in recent 40 years [J]. Tibet Science and Technology, 2018(9): 49-55+59]
[4] 张琪,李跃清,陈权亮,等. 近46年西南地区云量的时空变化特征[J]. 高原气象, 2011, 30(2): 339-348. [ZHANG Qi, LI Yueqing, CHEN Quanliang, et al. Temporal and spatial distributions of cloud cover over southwest China in recent 46 years [J]. Plateau Meteorology, 2011, 30(2): 339-348]
[5] 陈少勇,董安祥. 青藏高原总云量的气候变化及其稳定性[J]. 干旱区研究, 2006,23(2): 327-333. [CHEN Shaoyong, DONG Anxiang. Climatic change and stability of total cloud amount over the Qinghai-Tibetan Plateau [J]. Arid Zone Research, 2006,23(2): 327-333] DOI: 10.13866/j.azr.2006.02.023
[6] 徐祥德,赵天良,LU Chungu,等. 青藏高原大气水分循环特征[J]. 气象学报, 2014, 72(6): 1079-1095. [XU Xiangde, ZHAO Tianliang, LU Chungu, et al. Characteristics of the water cycle in the atmosphere over the Tibetan Plateau [J]. Acta Meteorologica Sinica, 2014,72(6): 1079-1095] DOI: 10.11676/qxxb2014.091
[7] FU Chuanbo, DAN Li, LIN Xiaobin, et al. Long-term change of total cloud cover and its possible reason over south China during 1960-2012 [J]. Atmospheric Science Letters, 2019, 20(11): e943. DOI: 10.1002/asl.943
[8] PYRGOU A, SANTAMOURIS M, LIVADA I. Spatiotemporal analysis of diurnal temperature range: Effect of urbanization, cloud cover, solar radiation, and precipitation [J]. Climate, 2019,7(7): 89. DOI: 10.3390/cli7070089
[9] YONG J C, HWANG Y T, ZELINKA M D, et al. Distinct patterns of cloud changes associated with decadal variability and their contribution to observed cloud cover trends [J]. Journal of Climate, 2019,32(21):7281-7301. DOI: 10.1175/JCLI-D-18-0443.1
[10] 王新,黄菲,王宏. 春季北极地区云量跷跷板式的趋势变化特征及其对北极放大的云反馈作用[J]. 中国海洋大学学报(自然科学版), 2020,50(7):10-17. [WANG Xin, HUANG Fei, WANG Hong. Seesaw pattern of Arctic cloud cover trend in spring and its cloud feedback effect for arctic amplification [J]. Periodical of Ocean University of China, 2020,50(7):10-17] DOI:10.16441/j.cnki.hdxb.20190187
[11] 刘健. 三种卫星云量数据在青藏高原地区的比对分析[J]. 遥感学报, 2021,25(7):1445-1459. [LIU Jian. Performance of cloud fraction of three satellite cloud climate date records over the Tibetan Plateau [J]. National Remote Sensing Bulletin, 2021,25(7):1445-1459] DOI: 10.11834/jrs.20219262
[12] 陶丽,袁媛,梁津. 峨眉山云海景观预报方法及云量特征研究[J]. 科技创新与应用, 2019(30):124-125. [TAO Li, YUAN Yuan, LIANG Jin. Study on prediction method and cloud cover characteristics of cloud sea landscape in Mount Emei [J]. Technology Innovation and Application, 2019(30):124-125]
[13] 段皎,刘煜. 近20年中国地区云量变化趋势[J]. 气象科技, 2011,39(3):280-288. [DUAN Jiao, LIU Yu. Variation and trends of cloud amount in China over past 20 years [J]. Meteorological Science and Technology, 2011,39(3):280-288] DOI: 10.19517/j.1671- 6345.2011.03.004
[14] 李慧晶,刘建西,刘东升,等. 西南地区云量变化特征[J]. 干旱气象, 2014, 32(2):194-200+219. [LI Huijing, LIU Jianxi, LIU Dongsheng, et al. Variation characteristics of cloud cover over southwestern China [J]. Journal of Arid Meteorology, 2014,32(2):194-200+219] DOI: 10.11755/j.issn.1006-7639(2014)-02-0194
[15] 王捷馨,赵中军,尚可政,等. 环渤海地区云量的时空分布特征[J]. 兰州大学学报(自然科学版), 2019,55(1):125-133+140. [WANG Jiexin, ZHAO Zhongjun, SHANG Kezheng, et al. Spatial and temporal distribution of cloud covers in the Bohai Sea region [J]. Journal of Lanzhou University: Natural Sciences, 2019,55(1):125-133+140] DOI: 10.13885/j.issn.0455-2059.2019.01.018
[16] 牛晓瑞,王淑瑜. 华北地区低云量的变化特征及其影响因子分析[J]. 高原气象, 2012, 31(5):1340-1347. [NIU Xiaorui, WANG Shuyu. Change characteristic of low cloud over north China region and its relationship with large scale circulation [J]. Plateau Meteorology, 2012, 31(5):1340-1347] DOI: 10. 3969/j.issn.1009-4393.2017.07.059
[17] 刘瑞霞,刘玉洁,杜秉玉. 中国云气候特征的分析[J]. 应用气象学报, 2004,15(4): 468-476. [LIU Ruixia, LIU Yujie, DU Bingyu. Cloud climatology characteristics of China from ISCCP data [J]. Journal of Applied Meteorological Science, 2004,15(4): 468-476] DOI: 10.3969/j.issn.1001-7313.2004.04.009
[18] 强安丰,汪妮,魏加华,等. 近50年三江源地区云水资源分布及降水效率研究[J]. 应用基础与工程科学学报, 2020,28(3):574-593. [QIANG Anfeng, WANG Ni, WEI Jiahua, et al. Study on cloud water resources distribution and precipitation efficiency in the three river headwaters region during the past 50 years [J]. Journal of Basic Science and Engineering, 2020,28(3):574-593] DOI: 10.16058/j.issn.1005-0930.2020.03.007
[19] 衡志炜. 基于卫星及数值模式资料的云水凝物的气候特征分析和检验[D]. 合肥: 中国科学技术大学, 2013. [HENG Zhiwei. Analysis and evaluation of hydrometeors based on satellite and model datasets [D]. Hefei: University of Science and Technology of China, 2013]
[20] 朱小祥,孟旭,方宗义,等. 利用卫星资料计算云南地区云量及云特征分析[J]. 气象, 1995,21(1):32-36. [ZHU Xiaoxiang, MENG Xu, FANG Zongyi, et al. Cloudiness calculation and characteristic analysis over Yunnan with polar orbiting meteorlogical satellite data [J]. Meteorology, 1995,21(1):32-36] DOI: 10.7519/j.issn.1000-0526.1995.1.007
[21] 丁守国,石广玉,赵春生. 利用ISCCP D2资料分析近20年全球不同云类云量的变化及其对气候可能的影响[J]. 科学通报, 2004,49(11):1105-1111. [DING Shouguo, SHI Guangyu, ZHAO Chunsheng. Using ISCCP D2 data to analyze the changes of global different cloud cover and cloud types in recent 20 years and their possible impacts on climate [J]. Science Bulletin, 2004,49(11):1105-1111] DOI: 10.3321/j.issn:0023-074X.2004.11.016
[22] 符传博,丹利,冯锦明,等. 1960-2012年中国地区总云量时空变化及其与气温和水汽的关系[J]. 大气科学, 2019, 43(1):87-98. [FU Chuanbo, DAN Li, FENG Jinming, et al. Temporal and spatial variations of total cloud amount and their possible relationships with temperature and water vapor over China during 1960 to 2012 [J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1):87-98] DOI: 10.3878/j.issn.1006-9895.1801.17235
[23] 李文韬,李兴宇,张礼林,等. 青藏高原云水气候特征分析[J]. 气候与环境研究, 2018,23(5):574-586. [LI Wentao, LI Xingyu, ZHANG Lilin, et al. Climatic characteristic analysis of cloud water over the Tibetan Plateau [J]. Climatic and Environmental Research, 2018,23(5):574-586] DOI: 10.3878/j.issn.1006-9585.2018.18039
[24] 马茜蓉,游庆龙,蔡淼,等. 基于CERES卫星资料分析中国近15 a云量变化[J]. 干旱气象, 2018,36(6):911-920. [MA Qianrong, YOU Qinglong, CAI Miao, et al. The cloud variation over China in recent 15 years based on CERES satellite data [J]. Journal of Arid Meteorology, 2018,36(6):911-920] DOI: 10.11755/j.issn.1006-7639(2018)-06-0911
[25] 李晓攀. 基于MODIS卫星数据分析近十四年中国地区云参数的时空变化特征[D]. 成都: 成都信息工程大学, 2019. [LI Xiaopan. Spatial and temporal variation characteristics of cloud parameters in China in recent 14 years based on MODIS satellite data [D]. Chengdu: Chengdu University of Information Technology, 2019 ] DOI: 10.27716/d.cnki.gcdxx.2019.000021
[26] 耿蓉. 基于卫星和再分析数据的大气水循环变量比较和分析[D]. 合肥: 中国科学技术大学, 2017. [GENG Rong. Comparison and analysis of atmospheric water cycle variables based on satellite and reanalysis data [D]. Hefei: University of Science and Technology of China, 2017 ]
[27] 白磊,王维霞,姚亚楠,等. ERA-Interim和NCEP/NCAR再分析数据气温和气压值在天山山区适用性分析[J]. 沙漠与绿洲气象, 2013,7(3):51-56. [BAI Lei, WANG Weixia, YAO Ya'nan, et al. Applicability of ERA-Interim and NCEP/NCAR reanalysis of air temperature and pressure on the Tianshan Mountains [J]. Desert and Oasis Meteorology, 2013,7(3):51-56] DOI: 10.3969/j.issn.1002-0799.2013.03.012
[28] 刘菊菊,游庆龙,周毓荃,等. 基于ERA-Interim的中国云水量时空分布和变化趋势[J]. 高原气象, 2018,37(6):1590-1604. [LIU Juju, YOU Qinglong, ZHOU Yuquan, et al. Distribution and trend of cloud water content in China based on ERA - Interim reanalysis [J]. Plateau Meteorology, 2018,37(6):1590-1604] DOI: 10.7522/j.issn.1000-0534.2018.00059
[29] 杜晖,贾晓红,尚子溦,等. ERA Interim再分析资料的云量可靠性分析—以太原和五寨为例[J]. 兰州大学学报(自然科学版),2020,56(2):253-259. [DU Hui, JIA Xiaohong, SHANG Ziwei, et al. Cloud reliability analysis of ERA Interim reanalysis data: Taking Taiyuan and Wuzhai as examples [J]. Journal of Lanzhou University: Natural Sciences, 2020,56(2):253-259] DOI: 10.13885/j.issn.0455-2059.2020.02.014
[30] 肖王星. 东北亚海冰变化特征及其原因分析[D]. 北京: 中国气象科学研究院, 2017. [XIAO Wangxing. Characteristics of sea ice in northeast Asia and its reasons [D]. Beijing: Chinese Academy of Meterological Sciences, 2017 ]
[31] 魏凤英. 现代气候统计诊断与预测技术(第2版)[M]. 北京: 气象出版社, 2007. [WEI Fengying. Modern climate statistical diagnosis and prediction technology(2nd edition)[M]. Beijing: Meteorological Press, 2007]

相似文献/References:

[1]蓝永超,胡兴林,丁宏伟,等.河西内陆河流域山区近50余年来气温变化的多尺度特征和突变分析[J].山地学报,2014,(02):163.
 LAN Yongchao,HU Xinglin,DIN Hongwei,et al.Multiple Time Scales Analysis of Jump and Variation of Air Temperature in Mountain Area of Hexi Inland River Basin in the Past More than 50 Years[J].Mountain Research,2014,(6):163.
[2]张宏亮,刘青利,李世杰,等.青藏高原兹格塘错沉积物介形虫壳体同位素[J].山地学报,2014,(03):373.
 ZHANG Hongliang,LIU Qingli,LI Shijie,et al.Holocene Environmental Changes Derived from Ostracode Shell Stable Isotopes in the Sediment Core of Zigetang Lake,Tibetan Plateau[J].Mountain Research,2014,(6):373.
[3]花晓波,阎建忠,刘祥,等.定居牧民对草地退化的适应策略——以那曲县为例[J].山地学报,2013,(02):140.
 HUA Xiaobo,YAN Jianzhong,Liu Xiang(9).Settled Herdsmen’s Adaptation Strategies to Pasture Degradation——Case Study of Naqu County in Tibet Plateau[J].Mountain Research,2013,(6):140.
[4]鲁嘉濠,牛富俊,程花,等.青藏高原工程走廊冻土分布模型及其变化趋势[J].山地学报,2013,(02):226.
 LU Jiahao,NIU Fujun,Cheng Hua,et al.The Permafrost Distribution Model and Its Change Trend of Qinghai-Tibet Engineering Corridor[J].Mountain Research,2013,(6):226.
[5]刘军会,高吉喜,王文杰,等.青藏高原植被覆盖变化及其与气候变化的关系[J].山地学报,2013,(02):234.
 LIU Junhui,GAO Jixi,WANG Wenjie().Variations of Vegetation Coverage and Its Relations to Global Climate Changes on the Tibetan Plateau during 1981—2005[J].Mountain Research,2013,(6):234.
[6]何永涛,石培礼,张宪洲,等.当雄念青唐古拉山脉南坡不同海拔垫状点地梅分布特征[J].山地学报,2013,(06):641.
 HE Yongtao,SHI Peili,ZHANG Xianzhou,et al.Elevational Distribution of Cushion Plant Androsace tapete in the Southern Slope of Nyainqentanglha Mountains, Tibetan Plateau[J].Mountain Research,2013,(6):641.
[7]赵志龙,张镱锂,刘峰贵,等.青藏高原农牧区干旱灾害风险分析[J].山地学报,2013,(06):672.
 ZHAO Zhilong,ZHANG Yili,LIU Fenggui,et al.Drought Disaster Risk Analysis of Tibetan Plateau[J].Mountain Research,2013,(6):672.
[8]陈有超,鲁旭阳,李卫朋,等.藏北典型高寒草原土壤微气候对增温的响应[J].山地学报,2014,(04):401.
 CHEN Youchao,LU Xuyang,LI Weipeng,et al.Response of Soil Microclimate to Warming in Alpine Steppe, Northern Tibetan Plateau[J].Mountain Research,2014,(6):401.
[9]姜永见,李世杰,沈德福,等.青藏高原江河源区近40年来气候变化特征及其对区域环境的影响[J].山地学报,2012,(04):461.
 JIANG Yongjian,LI Shijie,SHEN Defu,et al.Climate Change and Its Impact on the Regional Environment in the Source Regions of the Yangtze, Yellow and Lantsang Rivers in Qinghai-Tibetan Plateau during 1971—2008[J].Mountain Research,2012,(6):461.
[10]赵尚民,周成虎,程维明,等.青藏高原西北缘地形抬升速率与地质年代的关系[J].山地学报,2011,(05):616.
 ZHAO Shangmin,,et al.Relationships between Topographic Uplifting Velocity and Geological Times for the Northwestern Edge of Qinghai-Tibet Plateau[J].Mountain Research,2011,(6):616.

备注/Memo

备注/Memo:
收稿日期(Received date): 2020-11-28; 改回日期( Accepted date ):2022-11-01
基金项目(Foundation item): 西藏自治区自然科学基金(XZ-2019ZRG-150)。[Natural Science Foundation of Tibet(XZ-2019ZRG-150)]
作者简介(Biography): 余忠水(1971-),男,江西上饶人,高级工程师,主要研究方向:气象学。[YU Zhongshui(1971-), male, born in Shangrao, Jiangxi province. senior engineer, research on meteorology] E-mail: yu_zstb@163.com
*通讯作者(Corresponding author): 高佳佳(1986-),女,河北邯郸人,工程师,主要研究方向:气候变化。[GAO Jiajia(1986-), female, born in Handan, Hebei province. engineer, research on climate change] E-mail: gaojj12@lzu.edu.cn
更新日期/Last Update: 2022-12-30