[1]熊俊楠a*,曹依帆a,孙 铭,等.基于GIS和熵权法的滑坡作用下的长输油气管道易损性评价[J].山地学报,2020,(5):717-725.[doi:10.16089/j.cnki.1008-2786.000549]
 XIONG Junana*,CAO Yifana,SUN Ming,et al.Vulnerability Evaluation of Long-Distance Oil and Gas Pipelines under Landslide Actions Based on GIS and Entropy Weight Method[J].Mountain Research,2020,(5):717-725.[doi:10.16089/j.cnki.1008-2786.000549]
点击复制

基于GIS和熵权法的滑坡作用下的长输油气管道易损性评价()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第5期
页码:
717-725
栏目:
山区灾害
出版日期:
2020-11-10

文章信息/Info

Title:
Vulnerability Evaluation of Long-Distance Oil and Gas Pipelines under Landslide Actions Based on GIS and Entropy Weight Method
文章编号:
1008-2786-(2020)5-717-09
作者:
熊俊楠1a*曹依帆1a孙 铭2王迎兵3雍志玮1b
1.西南石油大学 a.土木工程与测绘学院; b.地球科学与技术学院,成都 610500; 2.四川省第一测绘工程院,成都 610100; 3.成都市华丰工程勘察设计有限公司 成都 610041
Author(s):
XIONG Junan1a* CAO Yifan1a SUN Ming2 WANG Yingbing3 YONG Zhiwei1b
1. a. School of Civil Engineering and Geomatics; b. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China; 2. The First Surveying and Mapping Institute of Sichuan Province, Chengdu 610100, China; 3. Chengdu Huafeng Engineering Survey and Design Co., Ltd., Chengdu 610041, China
关键词:
滑坡 输油管道 熵权法 易损性评价
分类号:
X43
DOI:
10.16089/j.cnki.1008-2786.000549
文献标志码:
A
摘要:
开展滑坡作用下的长输油气管道易损性评价,对于管道建设中的决策制定及防灾减灾具有重要意义。以兰州—成都—重庆(兰成渝)输油管道广元段实地调查测量数据为依托,从管道与滑坡空间关系、管道本体两方面出发,选取管道缺陷密度、管道壁厚、管道埋深、管道与斜坡单元夹角、管道位置等9个评价指标,基于ArcGIS、MATLAB软件平台和熵权赋值理论,进行管道易损性定量评价,并提出相应的管理建议。研究结果表明:(1)管道缺陷密度、管道壁厚、管道与斜坡单元夹角的熵权值分别为0.679、0.154、0.102,是对管道易损性影响最大的三个因子;(2)低易损性、中易损性、高易损性和极高易损性的管段数量占比分别为66.66%、20.56%、12.22%、0.56%,长度占比分别为62.06%、25.72%、12.11%、0.11%;(3)研究区北部的管道易损性等级较低,南部的易损性等级较高,高和极高易损性管道主要分布于下寺镇及宝轮镇。评价结果较好地反映了研究区内管道易损度现状,可为研究区管道管理及其他类似区域管道线路规划提供可靠参考。

参考文献/References:

[1] 霍峰,王玮,曹永利,等.跨越发展的中国油气储运建设技术及未来走向[J].石油科技论坛,2016, 35(3): 44-51. [HUO Feng, WANG Wei, CAO Yongli, et al. China's Construction Technology of Oil and Gas Storage and Transportation and Its Future Development Direction[J]. Oil Forum, 2016, 35(3): 44-51]
[2] 郭长宝,唐杰,吴瑞安,等.基于证据权模型的川藏铁路加查——朗县段滑坡易发性评价[J].山地学报,2019, 37(2): 240-251. [GUO Changbao, TANG Jie, WU Ruian, et al. Landslide susceptibility assessment based on WOE model along Jiacha —Langxian County section of Sichuan— Tibet Railway,China[J]. Mountain Research, 2019, 37(2): 240-251]
[3]孙铭. 基于GIS的输油管道滑坡地质灾害风险评价[D]. 成都:西南石油大学,2017:57-70. [SUN Ming. Risk assessment of geological hazard of oil pipeline landslide based on GIS [D]. Chengdu: Southwest Petroleum University, 2017: 57-70]
[4] 赖书名,胡勇生.广元宝珠村滑坡工程地质特征及成因机制研究[J].地质灾害与环境保护,2018, 29(3): 43-48. [LAI Shuming, HU Yongsheng. Engineering Geological Characteristics and Formation Mechanism of Baozhu Landslide in Guangyuan[J]. Journal of Geological Hazards and Environment Preservation, 2018, 29(3): 43-48]
[5] YANG Jintao, SONG Chao, YANG Yang, et al. New method for landslide susceptibility mapping supported by spatial logistic regression and GeoDetector: a case study of Duwen Highway Basin, Sichuan Province, China[J]. Geomorphology, 2018, 324: 62-71.
[6] MANSOUR M F, MORGENSTERN N R, MARTIN C D. Expected damage from displacement of slow-moving slides[J]. Landslides, 2010, 8(1): 117-131.
[7] 唐波,刘希林.国外城市灾害易损性研究进展[J].世界地理研究,2016, 25(1): 75-82. [TANG Bo, LIU Xilin. Review of analysis on vulnerability of urban disasters[J]. World Regional Studies, 2016, 25(1): 75-82]
[8] 郭跃.自然灾害的社会易损性及其影响因素研究[J].灾害学,2010, 25(1): 84-88. [GUO Yue. A study on social vulnerability to natural hazards and its influencing factors[J]. Journal of Catastrophology, 2010, 25(1): 84-88]
[9] 丁朋朋,杨宗佶,游勇,等.川藏铁路沿线滑坡灾害易损性评价[J].铁道建筑,2017, 57(8): 133-138. [DING Pengpeng, YANG Zongji, YOU Yong, et al. Vulnerability evaluation on landslide hazards to Sichuan -Tibet railway[J]. Railway Engineering, 2017, 57(8): 133-138]
[10] 宁成千,黄莉莉.埋地燃气管道易损性的模糊综合评价[J].内蒙古石油化工,2012, 38(9): 71-73. [NING Chengqian, HUANG Lili. The fuzzy comprehensive evaluation of vulnerability of buried gas pipeline[J]. Inner Mongolia Petrochemical Industry, 2012, 38(9): 71-73]
[11] WU T H, TANG W H, EINSTEIN H H. Landslides: investigation and mitigation, chapter 6 – landslide hazard and risk assessment [M]. Transportation Research Board, 1996: 106-118.
[12] XIONG Junnan, LI Jin, CHENG Weiming, et al. A GIS-based support vector machine model for flash flood vulnerability assessment and mapping in China[J].International Journal of Geo-Information, 2019, 8(7): 297.
[13] 刘迎春,石云山,卢启春,等.基于指标评分法的单体管道地质灾害风险评价——以土质滑坡为例[J].天然气技术与经济,2015, 9(3): 57-61. [LIU Yingchun, SHI Yunshan, LU Qichun, et al. Risk assessment of geological disasters in single pipe based on scoring index method: a case study of soil landslide[J]. Natural Gas Technology and Economy, 2015, 9(3): 57-61]
[14] 刘洋洋,李永强,李有鹏,等.基于AHP-模糊综合评价法的山区丘陵公路灾害易损性研究——以河南省修武县为例[J].灾害学,2017, 32(2): 32-38. [LIU Yangyang, LI Yongqiang, LI Youpeng, et al. Research of highway disaster vulnerability based on AHP-fuzzy comprehensive evaluation method: a case study of Xiuwu county in Henan province[J]. Journal of Catastrophology, 2017, 32(2): 32-38]
[15] 田述军,孔纪名.基于斜坡单元和公路功能的滑坡风险评价[J].山地学报,2013, 31(5): 580-587. [TIAN Shujun, KONG Jiming. Risk assessment of landslide based on slope unit and highway function[J]. Mountain Research, 2013, 31(5): 580-587]
[16] 冯文凯,张涛,张誉瀚.显石寨村管道滑坡形成机制及管道易损性评价[J].地质灾害与环境保护,2014, 25(2): 83-88. [FENG Wenkai, ZHANG Tao, ZHANG Yuhan. Evaluating the stability of landslides in Xianshizhai village and the pipeline vulnerability with their action[J]. Journal of Geological Hazards and Environment Preservation, 2014, 25(2): 83-88]
[17] 严琨,沈锐利,李琦.大型悬索跨越结构地震易损性分析[J].四川建筑科学研究,2014, 40(6): 83-87. [YAN Kun, SHEN Ruili, LI Qi. Seismic vulnerability analysis for the long-span suspension cable pipeline aerial crossing structure[J]. Sichuan Building Science, 2014, 40(6): 83-87]
[18] 徐士彬,钱德玲,姚兰飞,等.路基遭受泥石流灾害的易损性评价[J].水土保持通报,2016, 36(5): 235-241. [XU Shibin, QIAN Deling, YAO Lanfei, et al. Evaluation of vulnerability of subgrade suffering from debris flow disasters[J]. Bulletin of Soil and Water Conservation, 2016, 36(5): 235-241]
[19] 刘兴荣,杨军,颉丽.泥石流对兰成渝输油管道的危害及防治[J].甘肃科学学报,2009, 21(1): 88-92. [LIU Xingrong, YANG Jun, XIE Li. The hazards of debris flow to oil transporting pipelines in Lan-Cheng-Yu[J]. Journal of Gansu Sciences, 2009, 21(1): 88-92]
[20] 熊俊楠,孙明远,孙铭.基于GIS及耦合协调原理的长输管道山洪泥石流风险性评价[J].天然气工业,2019, 39(3): 116-124. [XIONG Junnan, SUN Mingyuan, SUN Ming. Risk assessment on mountain torrents and debris flows along long-distance pipelines based on the GIS and coupling-coordination principle[J]. Natural Gas Industry, 2019, 39(3): 116-124]
[21] XIONG Junnan, SUN Ming, ZHANG Hao, et al. Application of the Levenburg–Marquardt back propagation neural network approach for landslide risk assessments [J]. Natural Hazards and Earth System Sciences, 2019, 19(3): 629-653.
[22] 李世元,简季,吴章生,等.广元市地质环境管理数据库系统设计[J].地质灾害与环境保护,2012, 23(3): 36-42. [LI Shiyuan, JIAN Ji, WU Zhangsheng, et al. A design of the Geo-environment management database system for Guangyuan city[J]. Journal of Geological Hazards and Environment Preservation, 2012, 23(3): 36-42]
[23] XU Hongshi, MA Chao, LIAN Jijian, et al. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China [J]. Journal of Hydrology, 2018, 563: 975-986.
[24] 郭磊,项卫东,刘英男,等.基于熵权法的新建长输天然气管道易损性评价[J].油气储运,2015, 34(4): 373-376. [GUO Lei, XIANG Weidong, LIU Yingnan, et al. Vulnerability assessment on new long-distance gas pipeline based on entropy method[J]. Oil & Gas Storage and Transportation, 2015, 34(4): 373-376]
[25] 宁娜,舒和平,刘东飞,等.基于熵权和模糊评判的单沟泥石流危险性评价[J].兰州大学学报(自然科学版),2014, 50(3): 369-375. [NING Na, SHU Heping, LIU Dongfei, et al. Hazard assessment of debris flow based on the entropy weight method and fuzzy evaluation method[J]. Journal of Lanzhou University(Natural Sciences), 2014, 50(3): 369-375]
[26] 熊俊楠,曹依帆,程维明,等.福建省山洪灾害危险性评价[J].山地学报,2019, 37(4): 538-550. [XIONG Junnan, CAO Yifan, CHENG Weiming, et al. Risk assessment of mountain torrent disasters in Fujian province, China[J]. Mountain Research, 2019, 37(4): 538-550]
[27] 包美玲,尹红.基于SPSS研究分析我国居民人均消费结构[J].软件,2018, 39(12): 136-140. [BAO Meiling, YIN Hong. Analysis of Per Capita consumption structure of Chinese residents based on SPSS[J]. Computer Engineering & Software, 2018, 39(12): 136-140]
[28] 郝建斌,刘建平,荆宏远,等.横穿状态下滑坡对管道推力的计算[J].石油学报,2012, 33(6): 1093-1097. [HAO Jianbin, LIU Jianping, JING Hongyuan, et al. A calculation of landslide thrust force to transverse pipelines[J]. Acta Petrolei Sinica, 2012, 33(6): 1093-1097]

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(5):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(5):89.
[3]白永健,倪化勇,王运生,等.喜德采书组“8?31”滑坡工程地质特征及运动过程[J].山地学报,2014,(03):327.
 BAI Yongjian,NI Huayong,WANG Yusheng,et al.Engineering Geological Characteristics and Motor Process of Caishu Landslide in Xide of Sichuan,China[J].Mountain Research,2014,(5):327.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(5):101.
[5]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(5):257.
[6]田述军,孔纪名.基于斜坡单元和公路功能的滑坡风险评价[J].山地学报,2013,(05):580.
 TIAN Shujun,KONG Jiming.Risk Assessment of Landslide Based on Slope Unit and Highway Function[J].Mountain Research,2013,(5):580.
[7]王秀丽,唐亚.树木地貌学在地质灾害研究中的应用[J].山地学报,2014,(06):761.
 WANG Xiuli,TANG Ya.Application of Dendrogeomorphology in the Research of Geological Disasters[J].Mountain Research,2014,(5):761.
[8]方丹,胡卓玮,王志恒,等.基于GIS的北川县地震次生滑坡灾害空间预测[J].山地学报,2012,(02):230.
 FANG Dan,HU Zhuowei,WANG Zhiheng.Spatial Prediction of EarthquakeInduced Secondary Landslide Disaster in Beichuan County Based on GIS[J].Mountain Research,2012,(5):230.
[9]常鸣,唐川,李为乐,等.汶川地震区绵远河流域泥石流形成区的崩塌滑坡特征[J].山地学报,2012,(05):561.
 River Basin,ChinaCHANG Ming,TANG Chuan,et al.The Characteristic of Collapse and Landslide by Wenchuan Earthquake in Debris Flow for Mative Region along the Mianyuan[J].Mountain Research,2012,(5):561.
[10]彭永良,郭得令,胡卸文,等.河北省宽城县某滑坡特征与稳定性评价[J].山地学报,2011,(05):591.
 PENG Yongliang,GUO Deling,et al.Characteristics and Stability Analysis of a Landslide in Kuancheng County, Hebei Province[J].Mountain Research,2011,(5):591.

备注/Memo

备注/Memo:
收稿日期(Received date):2018-12-04; 改回日期(Accepted date): 2020-07-30
基金项目(Foundation item):中国科学院战略性先导科技专项(XDA20030302); 水科院全国山洪灾害调查评价项目(SHZH-IWHR-57); 数字福建自然灾害监测大数据研究所开放课题(NDMBD2018003); 西南石油大学科技创新团队项目(2017CXTD09)。[Strategic Priority Research Program of Chinese Academy of Sciences(XDA20030302); National Mountain Flood Disaster Investigation Project of China Institute of Water Resources and Hydropower(SHZH-IWHR-57); Open Fund of Big Data Institute of Digital Natural Disaster Monitoring in Fujian(NDMBD2018003); Innovation Team Projects of Southwest Petroleum University of Science and Technology(2017CXTD09)]
作者简介(Biography):熊俊楠(1981-),男,四川南充人,博士,教授,主要研究方向:地理信息系统与灾害风险分析。[XIONG Junnan(1981-), male, born in Nanchong, Sichuan province, Ph.D., professor, mainly engaged in the research on GIS and disaster risk analysis] E-mail: neu_xjn@163. com
更新日期/Last Update: 2020-09-30