[1]毕 瑞,甘 淑*,袁希平,等.复杂地貌无人机遥感3D场景构建[J].山地学报,2022,(1):151-164.[doi:10.16089/j.cnki.1008-2786.000662]
 BI Rui,GAN Shu*,YUAN Xiping,et al.3D Scene Construction of Complex Landform Based on UAV Remote Sensing[J].Mountain Research,2022,(1):151-164.[doi:10.16089/j.cnki.1008-2786.000662]
点击复制

复杂地貌无人机遥感3D场景构建
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第1期
页码:
151-164
栏目:
山地技术
出版日期:
2022-01-25

文章信息/Info

Title:
3D Scene Construction of Complex Landform Based on UAV Remote Sensing
文章编号:
1008-2786-(2022)1-151-14
作者:
毕 瑞1甘 淑12*袁希平23高 莎1胡 琳1
1. 昆明理工大学 国土资源工程学院,昆明 650093; 2. 云南省高校高原山地空间信息测绘技术应用工程研究中心,昆明 650093; 3. 滇西应用技术大学,云南 大理 671000
Author(s):
BI Rui1 GAN Shu12* YUAN Xiping23 GAO Sha1 HU Lin1
1. School of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China2. Research Center of Applied Engineering of Spatial Information Surveying and Mapping Technology of Plateau Mountain in Yunnan province, Kunming 650093, China; 3. West Yunnan University of Applied Sciences, Dali 671000, Yunnan, China
关键词:
无人机 遥感 3D场景构建 井字形格网 航线
分类号:
P23
DOI:
10.16089/j.cnki.1008-2786.000662
文献标志码:
A
摘要:
针对地形起伏变化较小、形态特征单一的地貌,无人机遥感多采用“已”字形垂直视角或模拟多镜头垂直视角航线从5个方向对目标对象进行数据采集,构建3D场景,但是对于地貌形态、空间分布急剧变化的山地环境,通过传统航线方式获取地貌影像时容易出现工作效率低、飞行安全性低、精度低等问题,适宜的航线规划方案是确保无人机飞行安全、提高工作效率、获取高质量影像的前提。本文基于无人机遥感技术,以云南省恐龙谷南缘的环状构造地貌入口处的典型坑唇地貌为研究区,利用RTK无人机获取坑唇地貌山脊上的大坡度地层露头影像,规划井字形格网交叉倾斜视角航线,采用SfM和MVS算法构建3D场景,基于目视解译、GIS地形特征提取和分析等方法实现多角度、多方法、精确的地貌特征识别、量测和地形特征分析。研究表明:(1)井字形交叉格网倾斜航线能构建平均精度达97.4%,具有厘米级精度的大坡度地层露头地貌3D场景。(2)目视解译得到的11条地层露头平均长度为92.62 m、平均倾角为12.40°,中部地层露头分布稀疏,两侧较为密集,山脊上部的地层露头走向为西南—东北、中部为南—北、下部为东南—西北。(3)地层露头整体近似为连续的阶梯状错断分布,大部分地层露头分布在高程为1695~1715 m、坡度为40°~ 60°、坡向为西南的山脊中部,且山脊中部有2个明显断层,垂直断距为5.42 m和16.18 m,山脊下侧的地层露头坡度最大,地形变化明显。本研究成果可为利用无人机遥感技术在复杂山地环境下获取高质量地貌影像和精细化地貌识别及其地形特征分析提供一种有效的参考方法。

参考文献/References:

[1] 杨玉春,齐雁冰,付金霞,等. 基于DEM的地貌特征分析与类型划分——以砒砂岩区为例[J]. 中国水土保持科学,2019,17(6):1-10. [YANG Yuchun, QI Yanbing, FU Jinxia, et al. DEM based geomorphic features and classification: A case study in the Pisha sandstone area [J]. Science of Soil and Water Conservation, 2019, 17(6): 1-10] DOI: 10.16843/j.sswc.2019.06.001
[2] 黄思霜,许模,杨艳娜,等. 川东高陡背斜区水文网控制的地下岩溶空间分异研究[J]. 山地学报, 2020,38(1):83-92. [HUANG Sishuang, XU Mo, YANG Yanna, et al. Spatial differentiation of underground karst controlled by hydrological network in high-steep anticline in eastern Sichuan, China [J]. Mountain Research, 2020, 38(1): 83-92] DOI: 10.16089/j.cnki.1008-2786.000493
[3] HU Sheng, QIU Haijun, WANG Ninglian, et al. The influence of loess cave development upon landslides and geomorphologic evolution: A case study from the northwest Loess Plateau, China [J]. Geomorphology, 2020, 359: 107167. DOI: 10.1016/j.geomorph.2020.107167
[4] 汪震,姜勇彪. 江西宜黄盆地丹霞地貌特征分析[J]. 山地学报,2019,37(6):839-847+942. [WANG Zhen,JIANG Yongbiao. Analysis of Danxia landform characteristics in the Yihuang basin, Jiangxi province, China [J]. Mountain Research, 2019, 37(6): 839-847+942] DOI: 10.16089/j.cnki.1008-2786.000474
[5] 熊礼阳,汤国安. 黄土高原沟谷地貌发育演化研究进展与展望[J]. 地球信息科学学报,2020,22(4):816-826. [XIONG Liyang, TANG Guoan. Research progresses and prospects of gully landform formation and evolution in the Loess Plateau of China [J]. Journal of Geo-information Science, 2020, 22(4): 816-826] DOI: 10.12082/dqxxkx.2020.190519
[6] GARCIA G P B, GROHMANN C H. DEM-based geomorphological mapping and landforms characterization of a tropical karst environment in southeastern Brazil [J]. Journal of South American Earth Sciences, 2019, 93: 14-22. DOI: 10.1016/j.jsames.2019.04.013
[7] 梁馨月,徐梦珍,吕立群,等. 基于地貌特征的青藏高原边缘泥石流沟分类[J]. 地理学报,2020,75(7):1373-1385. [LIANG Xinyue, XU Mengzhen, LYU Liqun, et al. Geomorphological characteristics of debris flow gullies on the edge of the Qinghai-Tibet Plateau [J]. Acta Geographica Sinica, 2020, 75(7): 1373-1385] DOI: 10.11821/dlxb202007004
[8] 孙稳,何宏林,魏占玉,等. 基于无人机航测获取高分辨率DEM数据的断层几何结构精细解译与分析——以海原断裂唐家坡为例[J]. 地震地质,2019,41(6):1350-1365. [SUN Wen, HE Honglin, WEI Zhanyu, et al. Interpretation and analysis of the fine fault geometry based on high-resolution DEM data derived from UAV photogrammetric technique: A case study of Tangjiapo site on the Haiyuan fault [J]. Seismology and Geology, 2019, 41(6): 1350-1365] DOI: 10.3969/j.issn.0253-4967.2019.06.003
[9] GUISADO-PINTADO E, JACKSON D W T, ROGERS D. 3D mapping efficacy of a drone and terrestrial laser scanner over a temperate beach-dune zone [J]. Geomorphology, 2019, 328: 157-172. DOI: 10.1016/j.geomorph.2018.12.013
[10] 齐德利,颜明,闫丹,等. 中国丹霞地貌的面积概算——粤北坪石红层盆地的实证研究[J]. 山地学报,2016,34(2):134-141. [QI Deli, YAN Ming, YAN Dan, et al. Estimate area of Danxia landform in China—an empirical research on Pingshi red-beds basin in northern Guangdong [J]. Mountain Research,2016,34(2): 134-141] DOI: 10.16089/j.cnki.1008-2786.000110
[11] 查方勇,郭威,张阳,等. 陕西南宫山南坡火山岩崩塌景观地貌形成演化[J]. 山地学报,2018,36(2):305-311. [ZHA Fangyong, GUO Wei, ZHANG Yang, et al. The formation and evolution of the volcanics-collapsed landform on the south slope of Nangong mountain in Shaanxi province,China [J]. Mountain Research, 2018, 36(2): 305-311] DOI: 10.16089/j.cnki.1008-2786.000326
[12] NOVAK A, OTIR K. Towards better visualization of Alpine quaternary landform features on high-resolution digital elevation models [J]. Remote Sensing, 2021, 13(21): 4211. DOI: 10.3390/rs13214211
[13] 赵振明,唐亚明,徐永,等. 山西大宁县典型滑坡体地貌特征与降雨和强震关系[J]. 地震工程学报,2020,42(6):1641-1649. [ZHAO Zhenming, TANG Yaming, XU Yong, et al. Geomorphic characteristics of typical landslides in Daning county, Shanxi province, China, and its relationship with rainfall and strong earthquakes [J]. China Earthquake Engineering Journal, 2020, 42(6): 1641-1649] DOI: 10.3969/j.issn.1000-0844.2020.06.1641
[14] DAOUT S, DINI B, HAEBERLI W, et al. Ice loss in the northeastern TibetanPlateau permafrost as seen by 16 yr of ESA SAR missions [J]. Earth and Planetary Science Letters, 2020, 545: 116404. DOI: 10.1016/j.epsl.2020.116404
[15] 刘青,王伟,高星,等. 大型滑坡坝溃决对下游河谷坡岸的影响分析——以白格滑坡下游50 km内的河谷边坡为例[J]. 山地学报,2021,39(2):226-237. [LIU Qing, WANG Wei, GAO Xing, et al. Analysis of the effects of dammed lake outburst floods on geomorphology of river basin: A case study of the valley slope erosion within 50 km downstream of Baige landslide, Tibet, China [J]. Mountain Research, 2021, 39(2): 226-237] DOI: 10.16089/j.cnki.1008-2786.000590
[16] FERNANDEZ T, PEREZ J L, CARDENAL J, et al. Analysis of landslide evolution affecting olive groves using UAV and photogrammetric techniques [J]. Remote Sensing, 2016, 8(10): 837. DOI: 10.3390/rs8100837
[17] 连会青,孟璐,韩瑞刚,等. 基于无人机遥感的地质信息提取——以柳江盆地为例[J]. 国土资源遥感,2020,32(3):136-142. [LIAN Huiqing, MENG Lu, HAN Ruigang, et al. Geological information extraction based on remote sensing of unmanned aerial vehicle: Exemplified by Liujiang basin [J]. Remote Sensing for Land and Resources, 2020, 32(3): 136-142] DOI: 10.6046/gtzyyg.2020.03.18
[18] 贾曙光,金爱兵,赵怡晴. 无人机摄影测量在高陡边坡地质调查中的应用[J]. 岩土力学,2018,39(3):1130-1136. [JIA Shuguang, JIN Aibing, ZHAO Yiqing. Application of UAV oblique photogrammetry in the field of geology survey at the high and steep slope [J]. Rock and Soil Mechanics, 2018, 39(3): 1130-1136] DOI: 10.16285/j.rsm.2017.1474
[19] BEMIS S P, MICKLETHWAITE S, TURNER D, et al. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology [J]. Journal of Structural Geology, 2014, 69: 163-178. DOI: 10.1016/j.jsg.2014.10.007
[20] 熊保颂,李雪. 基于便携式无人机SfM方法的活动构造地貌位错测量——以阿尔金断裂中段为例[J]. 科学技术与工程,2020,20(26):10848-10855. [XIONG Baosong, LI Xue. Offset measurement along active fault based on portable unmanned aerial vehicle and structure from motion: A case study of the middle section in Altyn-Tagh fault [J]. Science Technology and Engineering, 2020, 20(26): 10848-10855]
[21] MEINEN B U, ROBINSON D T. Mapping erosion and deposition in an agricultural landscape: Optimization of UAV image acquisition schemes for SfM-MVS [J]. Remote Sensing of Environment, 2020, 239: 111666. DOI: 10.1016/j.rse.2020.111666
[22] 黄海峰,林海玉,吕奕铭,等. 基于小型无人机遥感的单体地质灾害应急调查方法与实践[J]. 工程地质学报,2017,25(2):447-454. [HUANG Haifeng, LIN Haiyu, LYU Yiming, et al. Micro unmanned aerial vehicle based remote sensing method and application for emergency survey of individual geohazard [J]. Journal of Engineering Geology, 2017, 25(2): 447-454] DOI: 10.13544/j.cnki.jeg.2017.02.023
[23] LIN Haiyu, HUANG Haifeng, LYU Yiming, et al. Micro-UAV based remote sensing method for monitoring landslides in three gorges reservoir, China [G]. WU Ji, Proceeding of 2016 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). New York: IEEE. 2016:4944-4947. DOI: 10.1109/IGARSS.2016.7730290
[24] 黄海宁,黄健,周春宏,等. 无人机影像在高陡边坡危岩体调查中的应用[J]. 水文地质工程地质,2019,46(6):149-155. [HUANG Haining, HUANG Jian, ZHOU Chunhong, et al. Application of UAV images to rockfall investigation at the high and steep slope [J]. Hydrogeology and Engineering Geology, 2019, 46(6): 149-155] DOI: 10.16030/j.cnki.issn.1000-3665.2019.06.20
[25] 余加勇,薛现凯,陈昌富,等. 基于无人机倾斜摄影的公路边坡三维重建与灾害识别方法[J/OL]. 中国公路学报, 2021. [2021-1-29]. https://kns.cnki.net/kcms/detail/61.1313.U.20210129.1136.004.html [YU Jiayong, XUE Xiankai, CHEN Changfu, et al. Three-Dimensional reconstruction and disaster identification of highway slope using unmanned aerial vehicle-based oblique photography technique [J/OL]. China Journal of Highway and Transport, 2021. [2021-1-29]. https://kns.cnki.net/kcms/detail/61.1313.U.20210129.1136.004.html]
[26] RIQUELME A, DEL SOLDATO M, TOMAS R, et al. Digital landform reconstruction using old and recent open access digital aerial photos [J]. Geomorphology, 2019, 329: 206-223. DOI: 10.1016/j.geomorph.2019.01.003
[27] LI Xue, XIONG Baosong, YUAN Zhaode, et al. Evaluating the potentiality of using control-free images from a mini Unmanned Aerial Vehicle(UAV)and Structure-from-Motion(SfM)photogrammetry to measure paleoseismic offsets [J]. International Journal of Remote Sensing, 2021, 42(7): 2417-2439. DOI: 10.1080/01431161.2020.1862434
[28] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110. DOI: 10.1023/b:Visi.0000029664.99615.94
[29] AGUERA-VEGA F, CARVAJAL-RAMIREZ F, MARTINEZ-CARRICONDO P, et al. Reconstruction of extreme topography from UAV structure from motion photogrammetry [J]. Measurement, 2018, 121: 127-138. DOI: 10.1016/j.measurement.2018.02.062
[30] XIAO Xiongwu, GUO Bingxuan, LI Deren, et al. Multi-view stereo matching based on self-adaptive patch and image grouping for multiple unmanned aerial vehicle imagery [J]. Remote Sensing, 2016, 8(2): 89. DOI: 10.3390/rs8020089
[31] 余忠迪,李辉,巴芳,等. 基于消费者级无人机的城市三维建模[J]. 国土资源遥感,2018,30(2):67-72. [YU Zhongdi, LI Hui, BA Fang, et al. 3D city model construction based on a consumer-grade UAV [J]. Remote Sensing for Land and Resources, 2018, 30(2): 67-72] DOI: 10.6046/gtzyyg.2018.02.09
[32] 张迪,李家存,吴中海,等. 利用地面LiDAR精细化测量活断层微地貌形态——以毛垭坝断裂禾尼处断层崖为例[J]. 地质力学学报,2021,27(1):63-72. [ZHANG Di, LI Jiacun, WU Zhonghai, et al. Using terrestrial LiDAR to accurately measure the micro-geomorphologic geometry of active fault: A case study of fault scarp on the Maoyaba fault zone [J]. Journal of Geomechanics, 2021, 27(1): 63-72] DOI: 10.12090/j.issn.1006-6616.2021.27.01.007
[33] CLAESSENS L, HEUVELINK G B M, SCHOORL J M, et al. DEM resolution effects on shallow landslide hazard and soil redistribution modelling [J]. Earth Surface Processes and Landforms, 2005, 30(2): 461-477. DOI: 10.1002/esp.1155

相似文献/References:

[1]赵 伟,黄 盼,李爱农*.山地地表蒸散发遥感估算研究现状[J].山地学报,2017,(06):908.[doi:10.16089/j.cnki.1008-2786.000293]
 ZHAO Wei,HUANG Pan,LI Ainong*.A Review of Evapotranspiration Estimation Using RemotelySensed Data in Mountainous Region[J].Mountain Research,2017,(1):908.[doi:10.16089/j.cnki.1008-2786.000293]
[2]张 威,王宁练*,李 想,等.近20a西喀喇昆仑地区吉尔吉特河流域冰川面积变化及其对气候变化的响应[J].山地学报,2019,(03):347.[doi:10.16089/j.cnki.1008-2786.000428]
 ZHANG Wei,WANG Ninglian*,LI Xiang,et al.Glacier Changes and Its Response to Climate Change in the Gilgit River Basin, Western Karakorum Mountains over the Past 20 Years[J].Mountain Research,2019,(1):347.[doi:10.16089/j.cnki.1008-2786.000428]
[3]刘 欣,等.基于坡度—汇水面积关系的黄土浅沟与切沟沟头形成敏感区模拟[J].山地学报,2020,(5):658.[doi:10.16089/j.cnki.1008-2786.000543]
 LIU Xin,WANG Chunmei*,et al.Sensitive Area Simulation of Ephemeral and Permanent Gullies Based on Slope-Area Relationship in the Loess Region[J].Mountain Research,2020,(1):658.[doi:10.16089/j.cnki.1008-2786.000543]
[4]刘 飞,朱 庆*,丁雨淋,等.滑坡—堰塞湖灾情无人机应急测绘、分析与险情模拟[J].山地学报,2021,(4):600.[doi:10.16089/j.cnki.1008-2786.000623]
 LIU Fei,ZHU Qing*,DING Yulin,et al.Analysis and Simulation of Landslide-barrier Lake Disaster Based on UAV Emergency Mapping[J].Mountain Research,2021,(1):600.[doi:10.16089/j.cnki.1008-2786.000623]
[5]申华珍,王春梅*,庞国伟,等.黄土切沟沟头位置地形临界模型及不同土地利用下的参数差异[J].山地学报,2024,(2):174.[doi:10.16089/j.cnki.1008-2786.000814]
 SHEN Huazhen,WANG Chunmei*,PANG Guowei,et al.Topographical Critical Model of Loess Gully Head and Its Parameter Determination in Different Land Use Contexts[J].Mountain Research,2024,(1):174.[doi:10.16089/j.cnki.1008-2786.000814]

备注/Memo

备注/Memo:
收稿日期(Received date):2021-04-02; 改回日期(Accepted date): 2022-01-01
基金项目(Foundation item): 国家自然科学基金(41861054)。[National Natural Science Foundation of China(41861054)]
作者简介(Biography):毕瑞(1996-),男,云南昆明人,博士研究生,研究方向:摄影测量与遥感,无人机遥感及其应用。[BI Rui(1996-), male, born in Kunming, Yunnan province, Ph.D. candidate, research on photogrammetry and remote sensing, UAV remote sensing and its application] E-mail:biergr805453393@163.com
*通讯作者(Corresponding author):甘淑(1964-),女,云南腾冲人,教授,博士,研究方向:资源环境遥感及 3S 技术应用。[GAN Shu(1964-), female, born in Tenchong, Yunnan province, Ph.D., professor, research on remote sensing and 3S technology application of resources and environment] E-mail:18142645886@163.com
更新日期/Last Update: 2022-01-30