[1]丁明涛,周 鹏,张永旺,等.岷江上游干旱河谷边界波动的定量判定及其演化特征[J].山地学报,2017,(02):170-178.[doi:10.16089/j.cnki.1008-2786.000209]
 DING Mingtao,ZHOU Peng,ZHANG Yongwang,et al.Quantitative Determination of Boundary Fluctuation in Arid Valley of the Upper Min River and Its Evolution Feature[J].Mountain Research,2017,(02):170-178.[doi:10.16089/j.cnki.1008-2786.000209]
点击复制

岷江上游干旱河谷边界波动的定量判定及其演化特征()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2017年02期
页码:
170-178
栏目:
山地生态环境
出版日期:
2017-03-30

文章信息/Info

Title:
Quantitative Determination of Boundary Fluctuation in Arid Valley of the Upper Min River and Its Evolution Feature
文章编号:
1008-2786-(2017)2-170-09
作者:
丁明涛1周 鹏2张永旺1吕夏婷1
1. 西南科技大学 环境与资源学院,四川 绵阳 621010;
2. 重庆市彭水苗族土家族自治县水务局,重庆 彭水 409600
Author(s):
DING Mingtao1ZHOU Peng2ZHANG Yongwang1LV Xiating1
1.School of Environment and Sources,Southwest University of Science and Technology,Mianyang 621010,Sichuan;
2.Water Affairs Bureau of the Pengshui Miao and Tujia Autonomous County,Pengshui 409600,Chongqing
关键词:
干旱河谷边界波动演化特征风险管理岷江上游
Keywords:
arid valley boundary fluctuation evolution pattern risk management the upper reaches of Min River
分类号:
P208; P285
DOI:
10.16089/j.cnki.1008-2786.000209
文献标志码:
A
摘要:
在山区人口迅速增加和社会经济高速发展的进程中,干旱河谷作为山区生态系统的重要组成部分之一,承载了严重的被干扰和过度利用。在RS与GIS技术的支持下,本研究选择岷江上游干旱河谷作为研究对象,应用马尔科夫预测法和土地利用动态变化空间分析测算模型,开展干旱河谷边界波动的定量判定及其演化特征研究。研究结果表明:岷江上游干旱河谷区面积与上边界在逐年增加,上边界平均每年沿垂直方向抬升约5m,在未来较长时间内,干旱河谷面积的增长趋势将会越来越强;其中,1970至2010年干旱河谷转化速率(TRL70-2010)呈现不断上升趋势,分别为TRL70=1.44%,TRL80=0.95%,TRL90=2.32%,TRL2000=2.45%,TRL2010=3.59%;1990至2000年期间干旱河谷新增速率(IRL90-2000)最大,属于高速扩展期,在1970至1980年期间新增速率IRL70-80最小;1990至2000年期间干旱河谷"敏感性"最高,其年变化速率(CCL90-2000)为13.01%,其次为CCL2000-2010=6.51%,其余时期年均变化速率皆在4%左右。本研究结果可为我国西部灾害多发区聚落合理规划、灾害风险管理、人口合理分布与再调整提供重要的科学依据。
Abstract:
With rapid population growth and socio-economic development in mountainous regions of western China,arid valleys are acting as an important part in support of mountain ecosystems and suffering serious engineered interference and over-exploitation. With the help of RS and GIS technology,this research took arid valleys in the upper reaches of Min River as a case study. It applied the Markov prediction method and the model of dynamic change of land use space analysis calculation to perform a quantitatively investigation on the boundary fluctuation of arid valleys in the upper reaches of Min River and its evolutionary features. Results confirmed that: The area of arid valleys in the upper reaches of Min River and its upper border had been growing for years,On an annual average,the upper boundary kept uplifting about 5 m per year in the vertical direction,and the growth trend in the arid valley areas would be getting stronger in the long run; During 1970 to 2010,the expansion rate of arid valley(TRL70-2010)presented a rising trend,with TRL70=1.44%, TRL80=0.95%, TRL90=2.32%, TRL2000=2.45%, TRL2010=3.59%. separately; And arid valleys had been highly developing from 1990 to 2000 with a unprecedented maximum rate(IRL90-2000),which was regarded as high-speed expansion period,whereas for the period of 1970 to 1980,its rate IRL70-80 dropped to the minimum; As for the period of 1990 to 2000,arid valley had the highest“sensitivity”,with a annual rate of change(CCL90-2000)13.01%,followed by CCL2000-2010=6.51%,and in the remaining period,a average annual rate of change was about 4%. This research achievement can provide important scientific basis for rational site planning for settlements,disaster risk management,proper population distribution and readjustment in some areas of western China with a high susceptibility in geohazards.

参考文献/References:

[1] 胡向德,毕远宏,魏新平,等. 舟曲县三眼峪沟泥石流灾害治理工程分析[J]. 水土保持通报,2012,32(3):267-270 [HU xiangde,BI yuanhong,WEI xinping,et al. An Analysis of Treatment Project of Debris Flow Disaster in Sanyanyu Gully of Zhouqu County[J]. Bullentin of Soil and Water Conservation,2012,32(3):267-270]
[2] 马东涛,祁龙. 三眼峪沟泥石流灾害及其综合治理[J]. 水土保持通报. 1997,17(4):26-31 [MA Dongtao,QI Long. Study on comprehensive controlling of debris flow hazards in Sanvanvu Gully[J]. Bulletin of Soil and Water Conservation,1997,17(4):26-31]
[3] 余斌,杨永红,苏永超等. 甘肃省舟曲8. 7 特大泥石流调查研究[J]. 工程地质学报,2010,18(4),437-444 [YU Bin,YANG Yonghong,SU Yongchao,et al. Research on the giant debris flow hazards in Zhouqu County,Gansu Province on August 7[J]. Journal of Engineering Geology,2010,18(4),437-444]
[4] 胡凯衡,崔鹏,葛永刚. 舟曲“8.8”特大泥石流对建筑物的破坏方式[J]. 山地学报,2012,30(4):484-490 [HU Kaiheng,CUI Peng,GE Yonggang. Building destruction patterns by August 8,2010 debris flow in Zhouqu Western China[J]. Journal of Mountain Science,2012,30(4):484-490]
[5] 张宇,韦方强,崔鹏. 砖混建筑在泥石流冲击作用下的破坏形态模拟[J]. 自然灾害学报,2005,14(5):61-67 [ZHANG Yu,WEI Fangqiang,CUI Peng. Destruction mode simulation of reinforced masonry structure under impact of debris flow[J]. Journal of Natural Disasters,2005,14(5):61-67]
[6] HU Kaiheng,CUI Peng,ZHANG Jianqiang. Characteristics of damage to buildings by debris flows on 7 August 2010 in Zhouqu,Western China[J]. Natural Hazards and Earth System Sciences,2012,12(7):2209-2217
[7] 姚德基,商向朝. 七十年代的国外泥石流研究[C]// 中国科学院成都地理研究所. 泥石流论文集(1). 重庆:科学出版社重庆分社,1981:132-141 [YAO Deji,SHANG Xiangchao. Oversars studies on debris flow in 1970s[C]// Chengdu Institute of Geography,Chinese Academy of Sciences. Debris flow conference proceedings(1). Chongqing:Science Press,Chongqing Branch,1981:132-141]
[8] BAGNOLD R A. Experiments on gravity-free dispersion of large solid sphere in a Newtonian fluid under shear[J]. Proceedings of the Royal Society,of London:A,1954(225):49-63
[9] TAKAHASHI T. Debris flow on prismatic open channel[J]. Journal of the Hydraulics Division,1980,106(HY3):381-396
[10] CHEN C L. General solution for visoplastic of debris flow[J]. Journal of Hydraulic Engineering,1988,114(3):259-282
[11] 谢涛,谢湘平,韦方强,等. 鱼脊型泥石流水石分离结构适用性的模型试验研究[J]. 水利学报,2015,45(12):1472-1480 [XIE Tao,XIE Xiangping,WEI Fangqiang,et al. Applicability experiment of herringbone water-sediment separation structure for debris flow prevention[J]. Journal of Hydraulic Engineering,2015,45(12):1472-1480]
[12] 胡凯衡,韦方强,洪勇,等. 泥石流冲击力的野外测量[J]. 岩石力学与工程学报,2006,25(z1):2813-2819 [HU Kaiheng,WEI Fangqiang,HONG Yong et al. Field measurement of impact force of debris flow[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(z1):2813-2819]
[13] 唐金波,胡凯衡,周公旦,等. 基于小波分析的泥石流冲击力信号处理[J]. 四川大学学报工程科学版,2013,45(1):8-13 [TANG Jinbo,HU Kaiheng,ZHOU Gongdan,et al. Debris Flow Impact Pressure Signal Processing by the Wavelet Analysis[J]. Journal of Sichuan University(Engineering Science Edition),2013,45(1):8-13]
[14] 李培振,高宇,郭沫君. 泥石流冲击力的研究现状[J]. 结构工程师,2015,31(1):200-206 [LI Peizhen,GAO Yu,GUO Mojun. Research status and development trend of debris flow impact force [J]. Structural Engineers,2015,31(1):200-206]
[15] LICHTENHAHN C. Die Berechnung von Sperren in Beton und Eisenbeton. Kolloquium über Wildbach-sperren [J]. Mitteilungen der Forstlichen Bundesanstalt Wien,1973,102:91-127
[16] [苏]C.M.弗莱施曼. 泥石流[M],姚德基,译. 北京:科学出版社,1986:164-241 [C.M. FLEISHMAN. Debris Flows[M],YAO Deji(translated). Beijing:Science Press,1986:164-241]
[17] 张宇,韦方强,王青. 基于动量守恒的粘性泥石流冲击力计算[J]. 泥沙研究,2006,(3):23-26 [ZHANG Yu,WEI Fangqiang,WANG Qing. Impact force calculation of viscous debris flow based on momentum conservation[J]. Journal of Sediment Research,2006,(3):23-26]
[18] 陈光曦,王继康,王林海. 泥石流防治[M]. 北京:中国铁道出版社,1983:71-80 [CHEN Guangxi,WANG Jikang,WANG Linhai. Debris flow control[M]. Beijing:China Railway Publishing House,1983:71-80]
[19]何晓英,唐红梅,朱绣竹,等. 泥石流浆体冲击特性实验研究[J]. 振动与冲击,2013,32(24):127-134 [HE Xiaoying,TANG Hongmei,ZHU Xiuzhu,et al. Tests for impacting characteristics of debris flows slurry[J]. Journal of Vibration and Shock,2013,32(24):127-134]
[20]杨敏. 舟曲三眼峪沟特大泥石流灾害的形成条件[D]. 成都:中国科学院水利部成都山地灾害与环境研究所,2014:53-54 [YANG Min. Formation conditions of the disastrous debris flow of Sanyanyu Gully in Zhouqu County,Gansu Province[D]. Chengdu:Chengdu Institute of Mountain Hazards and Environment,CAS,2014:53-54]
[21] SCOTTON P,DEGANUTTI A. Phreatic line and dynamic impact in laboratory debris flow experiments[J]. American Society of Civil Engineers,1997:777-786
[22] 中国地质调查局. DZ/T0239-2004 泥石流灾害防治工程设计规范[S]. 北京:地质出版社,2004:7-10 [China Geological Survey. DZ/T0239-2004 Debris flow disaster prevention engineering design specifications[S]. Beijing:Geological Publishing House,2004:7-10]
[23] 康志成,李悼芬,马蔼乃,等. 中国泥石流研究[M]. 北京:科学出版社,2004:159-221 [KANG Zhicheng,LI Zhuofen,MA Ainai. Debris-flow Research in China[M]. Beijing:Science Press,2004:159-221]
[24] 吴积善,康志成,田连权. 云南蒋家沟泥石流观测研究[M]. 北京:科学出版社,1990:16-141 [WU Jishan,KANG Zhicheng,TIAN Lianquan. Observation of debris flow in Jiangjia Valley,Yunnan Province[M]. Beijing:Science Press,1990:16-141]
[25] 杜榕桓. 泥石流观测与研究[M]//章书成,Oldrich HUNGR,Olav SLAYMAKER. 泥石流中巨石冲击力计算. 北京:科学出版社,1996:67-72 [Du Ronghuan. Debris Flow Observation and Research[M]//ZHANG Shucheng,Oldrich HUNGR,Olav SLAYMAKER. The calculation of impact force of boulders in debris flow. Beijing:Science Press,1996:67-72]
[26] 何思明,吴永,沈均. 泥石流大块石冲击力的简化计算[J]. 自然灾害学报,2009,18(5):51-56 [HE Si-ming,WU Yong,SHEN Jun. Simplified calculation of impact force of massive stone in debris-flow[J]. Journal of Natural Disasters,2009,18(5):51-56]
[27] T. Mizuyama. Computational method and some considerations on impulsive force of debris flow acting on Sabo dams[J]. Journal of the Japan Society of Erosion Control Engineering,1979,11(2):40-43
[28] 甘肃省国土资源厅. 甘肃省地质灾害防治工程勘查设计技术要求[M]. 甘肃:兰州大学出版社,2003:1-81 [Gansu Provincial Department of Land and Resources. Technical requirements for the exploration and design of geological disaster prevention and control in Gansu Province[M]. Gansu:Lanzhou University press,2003:1-81]
[29] 康志成. 我国泥石流流速研究与计算方法[J]. 山地学报,1987,4(04):247-259 [KANG Zhicheng. A velocity research of debris flow and it is calculating method in China[J]. Mountain Research,1987,5(4):247-259]
[30] 李军,胡向德,黎志恒,等. 舟曲三眼峪沟特大泥石流形成及径流特征分析[J]. 甘肃地质,2013,22(3):58-63 [LI Jun,HU Xiangde,LI Zhiheng,et al. Analysis on development of debris flow in Sanyanyu Gully[J]. Gansu Geology,2013,22(3):58-63]

相似文献/References:

[1]王晶,包维楷.岷江干旱河谷中心地段植被微尺度空间格局特征[J].山地学报,2011,(06):668.
 WANG Jing,BAO Weikai.Finescale Spatial Pattern Typical Vegetation at the Dry Minjiang River Valley[J].Mountain Research,2011,(02):668.
[2]吕荣森.横断山区干旱河谷落叶果树资源及其开发[J].山地学报,1988,(04):219.
[3]刘伦辉.横断山区干旱河谷植被类型[J].山地学报,1989,(03):175.
[4]沈有信,张彦东,刘文耀.泥石流多发干旱河谷区植被恢复研究[J].山地学报,2002,(02):188.
[5]刘国华,张洁瑜,张育新,等.岷江干旱河谷三种主要灌丛地上生物量的分布规律[J].山地学报,2003,(01):24.
[6]庞学勇,包维楷.岷江柏林下土壤养分特征及种群间差异分析[J].山地学报,2005,(05):596.
[7]杨钦周.白刺属植物的川西新记录和澳大利亚间断分布途径的探讨[J].山地学报,2006,(02):137.
[8]杨钦周.岷江上游干旱河谷灌丛研究[J].山地学报,2007,(01):1.
[9]李芳兰,包维楷,朱林海,等.岷江干旱河谷豆科植物多样性及其空间格局[J].山地学报,2010,(01):76.

备注/Memo

备注/Memo:
基金项目(Foundation item):四川省青年科技基金项目(2017JQ0051); 国家自然科学基金项目(41371185); 教育部人文社会科学研究专项任务项目(工程科技人才培养研究)(15JDGC019)。 [Sichuan Youth Science & Technology Foundation(2017JQ0051); National Natural Science Foundation of China(41371185); Social Science Research Foundation of Ministry of Education(Engineering and technology training research)(15JDGC019).]
作者简介(Biography):丁明涛(1981-), 男(汉族), 山东日照人, 博士, 教授, 主要从事地质灾害风险控制与聚落减灾方面的教学与科研工作。[ Ding Mingtao(1981-), male(Han), born in Rizhao of Shandong province, Ph.D., Professor, mainly engaged in teaching and research work of geological hazard risk control and settlement planning.] E-mail: mingtaoding@163.com
更新日期/Last Update: 2017-03-30