[1]施龙博,方斌*,董立宽.江浙典型茶园的土壤速效钾空间分布[J].山地学报,2017,(02):160-169.[doi:10.16089/j.cnki.1008-2786.000208]
 SHI Longbo,FANG Bin*,DONG Likuan.Spatial Distribution Characteristics of Available Potassium in Typical Tea Gardens in Jiangsu Province and Zhejiang Province[J].Mountain Research,2017,(02):160-169.[doi:10.16089/j.cnki.1008-2786.000208]
点击复制

江浙典型茶园的土壤速效钾空间分布()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2017年02期
页码:
160-169
栏目:
山地生态环境
出版日期:
2017-03-30

文章信息/Info

Title:
Spatial Distribution Characteristics of Available Potassium in Typical Tea Gardens in Jiangsu Province and Zhejiang Province
文章编号:
1008-2786-(2017)2-160-10
作者:
施龙博1方斌123*董立宽1
1.南京师范大学 新型城镇化与土地问题研究中心,南京 210023;
2.江苏省地理信息资源开发与利用协同创新中心,南京 210023;
3.江苏省物质循环与污染控制重点实验室,南京 210023
Author(s):
SHI Longbo1FANG Bin123*DONG Likuan1
1 Nanjing Normal University,Research Center of New Urbanization and Land Problem,Nanjing,210023;
2 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing,210023;
3 Jiangsu Key Laboratory for Material Cycle and Pollution Control,Nanjing,210023
关键词:
速效钾茶园空间分布特征
分类号:
153.6+1
DOI:
10.16089/j.cnki.1008-2786.000208
文献标志码:
A
摘要:
钾是茶叶生长过程中必不可少的营养元素,研究其空间变异规律可为茶园的养分施用与经营管理提供理论指导,为切实提高茶叶质量和产量提供建议。论文以江、浙优质茶叶种植区内的速效钾含量为研究对象,运用描述统计学分析、半方差函数模型以及空间插值方法分析钾元素在不同地域条件下的空间变异特征及其影响因素。研究结果表明:(1)天目湖和溪龙乡种植区的速效钾含量平均值明显高于龙井村和东山镇种植区,其中溪龙乡最高,东山镇最低。(2)半方差函数模型拟合显示江苏两个茶叶种植区速效钾含量有中等空间相关性,浙江两个茶叶种植区速效钾含量空间相关性较弱。(3)插值结果显示江苏省两个茶叶种植区的速效钾含量高值区均在西南和东北部,浙江省两个种植区的速效钾含量高值区分布较分散。(4)四个种植区的速效钾分布均受到结构性因素和随机性因素共同作用,浙江省两个茶叶种植区受随机性因素影响更大。

参考文献/References:

[1] CIVAN F. Reservoir formation damage[M]. Burlington,USA:Gulf Professional Publishing,2011:1~9.
[2] WEISBROD N,NIEMET M R,ROCKHOLD M L,et al. Migration of saline solutions in variably saturated porous media[J]. Journal of contaminant hydrology,2004,72(1):109-133.
[3] ARMATAS G S,KANATZIDIS M G. Mesostructured germanium with cubic pore symmetry[J]. Nature,2006,441(7097):1122-1125.
[4] 罗玉龙,速宝玉,盛金昌,等. 对管涌机理的新认识[J]. 岩土工程学报,2011,33(12):1895-1902 [LUO Yulong,SU Bao-yu,SHENG Jinchang,et al. New understandings on piping mechanism[J]. Chinese Journal of Geotechnical Engineering,2011,33(12):1895-1902]
[5] 陈晓清,崔鹏,冯自立,等. 滑坡转化泥石流起动的人工降雨试验研究[J]. 岩石力学与工程学报,2006,25(1):106-116[CHEN Xiaoqing,CUI Peng,FENG Zili,et al. Artificial rainfall experimental study on landslide translation to debris flow[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(1):106-116.]
[6] 陈晓清. 滑坡转化泥石流起动机理试验研究[D]. 成都:西南交通大学,2006:98-103 [CHEN Xiaoqing. The research on landslide translation to debris flow[D]. Chengdu:Southwest Jiaotong University,2006:98-103]
[7] 胡明鉴,汪稔,张平仓. 斜坡稳定性及降雨条件下激发滑坡的试验研究[J]. 岩土工程学报,2001,23(4):454-457 [HU Mingjian,WANG Ren,ZHANG Pingcang. Primary research on the effect of rainfall on landslid[J]. Chinese Journal of Geotechnical Engineering,2001,23(4):454-457
[8] 矫滨田,鲁晓兵,王淑云,等. 土体降雨滑坡中细颗粒运移及效应[J]. 地下空间与工程学报,2005,1(7):1014-1016.[ JIAO Bin tian,LU Xiaobing,WANG Shuyun,et al. The movement of fine grains and its effects on the landslide and debris flow caused by raining[J]. Chinese Journal of Underground Space and Engineering,,2005,1(7):1014-1016.]
[9] LU X B,CUI P,HU K,et al. Initiation and development of water film by seepage[J]. Journal of Mountain Science,2010,7(4):361-366.
[10] 国家质量技术监督局,中华人民共和国建设部. 岩土工程基本术语标准[S]. 北京:中国计划出版社,1998:21-22[General Administration of Quality Supervision of the People's Republic of China,Ministry of Housing and Urban-Rural Development of the People's Repulic of China,Basic terminology standards of geotechnical engineering[S]. Beijing:China Planning Press,1998:21-22]
[11] 朱崇辉,王增红,刘俊民. 粗粒土的渗透破坏坡降与颗粒级配的关系研究[J]. 中国农村水利水电,2006(3):72-74[ZHU Chonghui,WANG Zenghong,LIU Junmin. Study on the relation between the permeation damage slope and the grain composition of coarse-grained soil[J]. China Rural Water and Hydropower,2006(3):72-74.]
[12] 崔鹏. 泥石流起动条件及机理的实验研究[J]. 科学通报,1991,36(21):1650-1652 [CUI Peng. Experiment study on the debris flow triggering conditions and mechanisms[J]. Chinese Science Bulletin,1991,36(21):1650-1652]
[13] 崔鹏,关君蔚. 泥石流起动的突变学特征[J]. 自然灾害学报,1993,2(1):53-61 [CUI Peng,GUAN Junwei. The sudden change properties of debris flow initiation[J]. Journal of Natural Disasters,1993,2(1):53-61]
[14] 吴积善,康志成,田连权,等. 云南蒋家沟泥石流观测研究[M]. 北京:科学出版社,1990:69-70[WU Jishan,KANG Zhicheng,TIAN Lianquan,et al,Research on the observation data in Jiangjia Gully debris flow in Yunnan province[M]. Beijing:Scicence Press,1990:69-70]
[15] 余斌,赵惠林. 粘性泥石流运动模型的实验研究[J]. 自然灾害学报,1999,8(2):81-87 [YU Bin,ZHAO Huilin. Research on movement model of viscous debris flow by rheological experiments[J]. Journal of Natural Disasters,1999,8(2):81-87]
[16] CHEN N S,ZHOU W,YANG C L,et al. The processes and mechanism of failure and debris flow initiation for gravel soil with different clay content[J]. Geomorphology,2010,121(3):222-230.
[17] WANG G,SASSA K. Pore-pressure generation and movement of rainfall-induced landslides:effects of grain size and fine-particle content[J]. Engineering geology,2003,69(1):109-125.
[18] 周小军,崔鹏,贾世涛,等. 基于正交设计的土体细颗粒迁移积聚水槽实验研究[J]. 四川大学学报(工程科学版),2012,(S1):83-88 [ZHOU Xiaojun,CUI Peng,JIA Shitao,et al. Flume test study on the movement of fine grains based on orthogonal design[J]. Journal of Sichuan University(Engineering Science edition),2012,(S1):83-88]
[19] 周小军,崔鹏,李战鲁. 泥石流源区砾石土渗透沉降综合测试设备研制及应用[J]. 岩石力学与工程学报,2012,31(6):1281-1289 [ZHOU Xiaojun,CUI Peng,LI Zhanlu. Development and application of integrated test equipment for permeability and settlement of gravelly soil in triggering area of debris flow[J],Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1281-1289.]
[20] 王志兵. 泥石流源区土体颗粒运移堵塞效应及其斜坡破坏模式[D]. 武汉:中国科学院武汉岩土力学研究所,2011:78-82[WANG Zhibing. Fine migrating leading to blocking and different failure modes with debris flow source soil[D]. Wuhan:Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2011:78-82]
[21] 陈星欣,白冰,于涛,等. 粒径和渗流速度对多孔介质中悬浮颗粒迁移和沉积特性的耦合影响[J]. 岩石力学与工程学报,2012,31(S2):4248-4253 [CHEN Xingxin,BAI Bing,YU Tao,et al. Coupled effects of particle size and flow rate on characteristics of particle transportation and deposition in porous media[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(S2):4248-4253]
[22] 陈星欣,白冰. 重力对饱和多孔介质中颗粒输运特性的影响[J]. 岩土工程学报,2012,34(9):1661-1667 [CHEN Xingxin,BAI Bing. Effect of gravity on transport of particles in saturated porous media[J]. Chinese Journal of Geotechnical Engineering,2012,34(9):1661-1667]
[23] 雷廷武,张晴雯,闫丽娟. 细沟侵蚀物理模型[M]. 北京:科学出版社,2009:144-158 [LEI Tingwu,ZHANG Qingwen,YAN Lijuan. Physical models of rill erosion[M]. Beijing:Science Press. 2009:144-158]
[24] 李俊杰. 应用于土壤侵蚀的环境放射性核素示踪技术方法研究[D]. 北京:中国农业科学院农业环境与可持续发展研究所,2008:61-95 [LI Junjie. Study for tracing technique and methods using environmental radionuclides applied to soil erosion[D]. Beijing:Institute of Environment and Sustainable Development in Agriculture,Chinese Academy of Agricultural Sciences,2008:61-95]
[25] 王静慧,沙占江,马涛,等. 放射性核素137Cs 在示踪土壤侵蚀研究中的应用[J]. 盐湖研究,2012,20(002):59-65 [WANG Jinghui,SHA Zhanjiang,MA Tao,et al. Radioactive fallout 137Cs as a tracer to study soil erosion[J]. Journal of Salt Lake Research,2012,20(002):59-65]
[26] 曲志捷. 流化颗粒显示的新方法——颗粒荧光示踪法[J]. 应用化学,1984,3:77-78 [QU Zhijie. A new method to trace fluidized particles(Fluorescent tracer particle method)[J]. Chinese Journal of Applied Chemistry,1984,3:77-78.]
[27] WEISBROD N,NIEMET M R,ROCKHOLD M L,et al. Migration of saline solutions in variably saturated porous media[J]. Journal of contaminant hydrology,2004,72(1):109-133.
[28] ZVIKELSKY O,WEISBROD N. Impact of particle size on colloid transport in discrete fractures[J]. Water resources research,2006,42(12):1-8.
[29] ZVIKELSKY O,WEISBROD N,Dody A. A comparison of clay colloid and artificial microsphere transport in natural discrete fractures[J]. Journal of colloid and interface science,2008,323(2):286-292.
[30] COUSSY O. Poromechanics[M]. West Sussex,England:John Wiley & Sons,2004:1-17.
[31] JANSSEN H K,TÄUBER U C. The field theory approach to percolation processes[J]. Annals of Physics,2005,315(1):147-192.
[32] SAHIMI M,GAVALAS G R,TSOTSIS T T. Statistical and continuum models of fluid-solid reactions in porous media[J]. Chemical Engineering Science,1990,45(6):1443-1502.
[33] SAHIMI M. Flow and transport in porous media and fractured rock:from classical methods to modern approaches[M]. Weinheim,Germany:John Wiley & Sons,2012:15-37,179-212.
[34] STAUFFER D,AHARONY A. Introduction to percolation theory[M]. London:Taylor and Francis,1991:1-13.
[35] GOLDEN K M. Percolation models for porous media[M]. New York:Springer,1997:27-43.
[36] 吕兆兴. 孔隙裂隙双重介质逾渗理论及应用研究[D]. 太原:太原理工大学,2008:73-98 [LYU Zhaoxing. The theory and its application of percolation in poreand fracture double-medium[D]. Taiyuan:Taiyuan University of Technology,2008:73-98]
[37] HUNT A,EWING R. Percolation theory for flow in porous media[M]. Heidelberg,Germany:Springer,2009:1-34.
[38] SUCCI S. The Lattice-Boltzmann Equation[M]. Oxford:Oxford university press,2001:1-73.
[39] 郭照立,郑楚光,李青,等. 流体动力学的格子 Boltzmann 方法[M]. 武汉:湖北科学技术出版社,2002:29-50[GUO Zhaoli,ZHENG Chuguang,LI Qing,et al. Lattice Boltzmann method for hydrodynamics[M]. Wuhan:Hubei Science & Technology Press,2002:29-50.]
[40] SUKOP M C,THORNE D T. Lattice Boltzmann modeling:an introduction for geoscientists and engineers[M]. Berlin:Springer,2007:1-11.
[41] 段雅丽. 格子 Boltzmann 方法及其在流体动力学上的一些应用[D]. 合肥:中国科学技术大学数学系,2007:71-78 [DUAN Yali. Lattice Boltzmann method and some application to hydrodynamics[D]. Hefei University of Science and Technology of China,2007:71-78]
[42] FLURY M,FLÜHLER H,JURY W A,et al. Susceptibility of soils to preferential flow of water:A field study[J]. Water resources research,1994,30(7):1945-1954.
[43] GERKE H H,GENUCHTEN M T. A dual‐porosity model for simulating the preferential movement of water and solutes in structured porous media[J]. Water Resources Research,1993,29(2):305-319.
[44] STEENHUIS T S,RICHARD T L,PARLANGE M B,et al. Preferential flow influences on drainage of shallow sloping soils[J]. Agricultural water management,1988,14(1):137-151.
[45] 曾远. 土体破坏细观机理及颗粒流数值模拟[D]. 上海:同济大学,2006:123-142[ZENG Yuan. Microscopic mechanics of soil failure and PFC numerical simulation[D]. Shanghai:Tongji University,2006:123-142]
[46] 周健,贾敏才. 土工细观模型试验与数值模拟[M]. 北京:科学出版社,2008:1-20 [ZHOU Jian,JIA Mincai. Soil meso-scale model test and numerical simulation[M]. Beijing:Science Press,2008:1-20]
[47] 王国强. 郝万军,王继新. 离散单元法及其在 EDEM 上的实践[M]. 西安:西北工业大学出版社,2010:2-10 [WANG Guoqiang,HAO Wanjun,WANG Jixin. Discrete Element method and its application on EDEM[M]. Xi'an,Northwestern Polytechnical University Press,2010:2-10]
[48] ZOU Y H,CHEN Q,CHEN X Q,et al. Discrete numerical modeling of particle transport in granular filters[J]. Computers and Geotechnics,2013,47:48-56.
[49] LU X B,CUI P. A study on water film in saturated sand[J]. International Journal of Sediment Research,2010,25(3):221-232.
[50] COMSOL A B. COMSOL multiphysics user's guide[OL]. Sweden:2005(9):http://www.comsol.com/.
[51] BLUNT M J,BIJELJIC B,DONG H,et al. Pore-scale imaging and modelling[J]. Advances in Water Resources,2013,51:197-216.
[52] SAMOUЁLIAN A,VOGEL H J,IPPISCH O. Upscaling hydraulic conductivity based on the topology of the sub-scale structure[J]. Advances in water resources,2007,30(5):1179-1189.

相似文献/References:

[1]邓小华,杨丽丽,周米良,等.湘西喀斯特区植烟土壤速效钾含量分布及影响因素[J].山地学报,2013,(05):519.
 DENG Xiaohua,YANG Lili,ZHOU Miliang,et al.Distribution of Available Potassium Contents of Tobaccogrowing Soil and Its Influencing Factors in Karst Region of Xiangxi[J].Mountain Research,2013,(02):519.
[2]杨效东,佘宇平,陶滔,等.云南思茅山区茶园土壤节肢动物群落结构与生境之关系[J].山地学报,1999,(02):46.

备注/Memo

备注/Memo:
基金项目(Foundation item):国家自然科学基金项目(41271189; 41671174)[National Nature Science Fund Project(41271189)]
作者简介(Biography):施龙博(1992-),男(汉族),江苏启东人,硕士研究生,从事土地资源管理研究。[Shi Longbo(1992-), male, M.Sc. candidate, major in land resource management.] E-mail:shilongbo@126.com
*通信作者(Corresponding author): 方斌(1968-),男,江西九江人,博士,教授,从事土地资源管理研究。[Fang Bin(1968-), male, Ph.D, professor, research on land resource management.] E-mail: wenyanfang731@163.com
更新日期/Last Update: 2017-03-30