[1]崔晓薇,张喜风*,梁水明.祁连山综合土壤可蚀性指数与环境因子的关联性[J].山地学报,2024,(1):14-26.[doi:10.16089/j.cnki.1008-2786.000800]
 CUI Xiaowei,ZHANG Xifeng*,LIANG Shuiming.Correlation between Comprehensive Soil Erodibility Index and Environmental Factors in the Qilian Mountains, China[J].Mountain Research,2024,(1):14-26.[doi:10.16089/j.cnki.1008-2786.000800]
点击复制

祁连山综合土壤可蚀性指数与环境因子的关联性
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第1期
页码:
14-26
栏目:
山地环境
出版日期:
2024-03-25

文章信息/Info

Title:
Correlation between Comprehensive Soil Erodibility Index and Environmental Factors in the Qilian Mountains, China
文章编号:
1008-2786-(2024)1-014-13
作者:
崔晓薇张喜风*梁水明
(西北师范大学 地理与环境科学学院,兰州 730070)
Author(s):
CUI Xiaowei ZHANG Xifeng* LIANG Shuiming
(College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China)
关键词:
CSEI 地理探测器 水土保持 祁连山
Keywords:
CSEI Geodetector soil and water conservation the Qilian Mountains
分类号:
X171.1
DOI:
10.16089/j.cnki.1008-2786.000800
文献标志码:
A
摘要:
土壤可蚀度是估算土壤侵蚀量和评价水土保持功能的关键参数。鉴于国家级水土保持重点预防区——祁连山区的土壤可蚀度研究仍处于碎片化状态,本文以水土保持区划为基础,综合考虑水力和风力侵蚀因子,运用空间分析和地理探测器方法,探究祁连山区综合土壤可蚀性指数(Comprehensive Soil Erodibility Index,CSEI)分布特征及其驱动因子。结果表明:(1)祁连山区域CSEI值为0.16~0.54,中值区(0.20~0.40)占地最大,大多位于研究区东部和中北部,少数位于西部。(2)坡度、年降水量和NDVI对CSEI空间分异影响显著。(3)双驱动因子对CSEI的解释力均高于单因子,呈非线性或双因子增强,各区驱动因子差异显著,陇中丘陵沟壑蓄水保土区(Ⅰ区)为年均风速∩NDVI(q=0.95),河西走廊农田防护防沙区(Ⅱ区)和祁连山山地水源涵养保土区(Ⅲ区)为年降水量∩NDVI(q=0.73和0.63),柴达木盆地农田防护防沙区(Ⅳ区)为土地利用∩年均温度(q=0.37),青海湖高原山地生态维护保土区(Ⅴ区)为土地利用∩NDVI(q=0.65),柴达木盆地农田防护防沙区(Ⅵ区)为年降水量∩年均风速(q=0.17)。综合分析得出,祁连山西部地区降水少、风速强、土壤可蚀度较高; 东部地区降水量相对较多,植被覆盖度高,土壤可蚀度低。研究结果可为祁连山区开展山水林田湖草沙生态保护工程、因地制宜制定修复政策提供理论依据。
Abstract:
The Qilian Mountains area is a national key conservation and prevention zone for soil-water loss in China. Soil erodibility index is a key parameter for estimating soil erosion and evaluating soil-water conservation benefits, but the specific knowledge of soil erodibility in the Qilian Mountains area was in a fragmented state, far from application. In this study, it explored the distribution characteristics of Comprehensive Soil Erodibility Index(CSEI)in the Qilian Mountains area and its driving factors using spatial analysis and Geodetector methods based on the National Water and Soil Conservation Zoning(NWSCZ)issued in 2012 by Ministry of Water Resources of China.
It found that(1)in the Qilian Mountains area, CSEI value ranged from 0.16 to 0.54, with an average of 0.38. The areas with low-value CSEI(0 to 0.20)occupied the smallest lands, primarily in the southeast of the Qinghai Lake Plateau mountain ecological conservation area(Zone Ⅴ). The median-value areas(0.20 to 0.40)covered the largest area, mainly in the Longzhong Hills Gully water storage conservation area(Zone I)and in the Qingdong-Gannan Hills Gully water storage conservation area(Zone Ⅳ), the farmland protection and sand prevention area in Hexi Corridor(Zone Ⅱ), the mountain water conservation and soil conservation area in the Qilian Mountains(Zone Ⅲ), and the east of Zone Ⅴ. The high-value area(0.40 to 0.60)covered a large area, mainly in the west of Zone Ⅱ, Ⅲ, Ⅴ and the farmland protection and sand prevention area of the Qaidam Basin(Zone Ⅵ).(2)Slope, annual precipitation and normalized vegetation index(NDVI)had a significant impact on CSEI spatial differentiation.(3)NDVI expressed strong explanatory power concerning the spatial distribution of CSEI and was the primary driving factor for 89.38% area of the study area. There was a considerable difference in the types of dual driving factors. The driving factor was the average annual wind speed∩NDVI(q=0.95)in Zone Ⅰ, the annual precipitation∩NDVI(q=0.73 and 0.63)in Zone Ⅱ and Zone Ⅲ, the land use∩average annual temperature(q=0.37)in Zone Ⅳ, the land use∩NDVI in Zone Ⅴ(q=0.65), and the annual precipitation∩average annual wind speed(q=0.17)in Zone Ⅵ.
According to comprehensive analysis, the western Qilian Mountains has less precipitation, strong wind speed and higher soil erodibility. In the eastern region, precipitation is relatively high, vegetation coverage is high, and soil erodibility is low. The research can provide a theoretical basis for implementing of ecological protection projects in the Qilian Mountains, and formulating of policy-making.

参考文献/References:

[1] 何茂林, 张玉珊, 高家勇, 等. 喀斯特区土壤侵蚀与石漠化协同演变及交互关系[J]. 水土保持学报, 2023, 37(1): 140-150.[HE Maolin, ZHANG Yushan, GAO Jiayong, et al. Synergistic evolution and interaction of soil erosion and rocky desertification in karst areas[J]. Journal of Soil and Water Conservation, 2023, 37(1): 140-150] DOI: 10.13870/j.cnki.stbcxb.2023.01.020
[2] ZHANG Guanghui, TANG Mingke, ZHANG X C. Temporal variation in soil detachment under different land uses in the Loess Plateau of China[J]. Earth Surface Processes and Landforms, 2009, 34(9): 1302-1309. DOI: 10.1002/esp.1827
[3] ZHAO Guangju, MU Xingmin, WEN Zhongming, et al. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China[J]. Land Degradation and Development, 2013, 24(5): 499-510. DOI: 10.1002/ldr.2246
[4] DONG Lingbo, LI Jiwei, ZHANG Yu, et al. Effects of vegetation restoration types on soil nutrients and soil erodibility regulated by slope positions on the Loess Plateau[J]. Journal of Environmental Management, 2022, 302: 113985. DOI: 10.1016/j.jenvman.2021.113985
[5] WANG Hao, ZHANG Guanghui, LI Ningning, et al. Soil erodibility influenced by natural restoration time of abandoned farmland on the Loess Plateau of China[J]. Geoderma, 2018, 325: 18-27. DOI: 10.1016/j.geoderma.2018.03.037
[6] CHEN Shiqi, ZHANG Guanghui, LUO Yifeng, et al. Soil erodibility indicators as affected by water level fluctuations in the Three Gorges Reservoir area, China[J]. Catena, 2021, 207: 105692. DOI: 10.1016/j.catena.2021.105692
[7] CHEN Shiqi, ZHANG Guanghui, ZHU Pingzong, et al. Impact of land use type on soil erodibility in a small watershed of rolling hill northeast China[J]. Soil and Tillage Research, 2023, 227: 105597. DOI: 10.1016/j.still.2022.105597
[8] 綦璨, 范弢, 陈进豪. 滇东岩溶断陷盆地地表/地下不同侵蚀场土壤的可蚀性[J]. 水土保持学报, 2022, 36(5): 66-74.[QI Can, FAN Tao, CHEN Jinhao. Soil erodibility of different surface and underground erosion fields in Karst Rift Basin of eastern Yunnan[J]. Journal of Soil and Water Conservation, 2022, 36(5): 66-74] DOI: 10.13870/j.cnki.stbcxb.2022.05.010
[9] GUO Mingming, CHEN Zhouxin, WANG Wenlong, et al. Revegetation induced change in soil erodibility as influenced by slope situation on the Loess Plateau[J]. Science of the Total Environment, 2021, 772: 145540. DOI: 10.1016/j.scitotenv.2021.145540
[10] WANG Hao, WANG Jian, ZHANG Guanghui. Impact of landscape positions on soil erodibility indices in typical vegetation-restored slope-gully systems on the Loess Plateau of China[J]. Catena, 2021, 201: 105235. DOI: 10.1016/j.catena.2021.105235
[11] WANG Hao, ZHANG Guanghui, LI Ningning, et al. Soil erodibility as impacted by vegetation restoration strategies on the Loess Plateau of China[J]. Earth Surface Processes and Landforms, 2019, 44(3): 796-807. DOI: 10.1002/esp.4531
[12] WANG Jinfeng, LI Xinhu, CHRISTAKOS G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010, 24(1): 107-127. DOI: 10.1080/13658810802443457
[13] 陈玉兰, 焦菊英, 田红卫, 等. 黄土高原归一化植被指数与自然环境因子的空间关联性——基于地理探测器[J]. 生态学报, 2022, 42(9): 3569-3580.[CHEN Yulan, JIAO Juying, TIAN Hongwei, et al. Spatial correlation analysis between vegetation NDVI and natural environmental factors based on geographical detector on the Loess Plateau[J]. Acta Ecologica Sinica, 2022, 42(9): 3569-3580] DOI: 10.5846/stxb202012013070
[14] 赵恒策. 青海省江河源区草地土壤可蚀性关键因子研究[D]. 兰州: 兰州大学, 2019: 27-34.[ZHAO Hengce. Study on key factors of soil erodibility of grassland in the source area of the Yangtz and Yellow River in Qinghai province[D]. Lanzhou: Lanzhou University, 2019: 27-34]
[15] 王欢, 高江波, 侯文娟. 基于地理探测器的喀斯特不同地貌形态类型区土壤侵蚀定量归因[J]. 地理学报, 2018, 73(9): 1674-1686.[WANG Huan, GAO Jiangbo, HOU Wenjuan. Quantitative attribution analysis of soil erosion in different morphological types of geomorphology in karst areas: Based on the geographical detector method[J]. Acta Geographica Sinica, 2018, 73(9): 1674-1686] DOI: 10.11821/dlxb201809005
[16] WANG Jinfeng, HU Yi. Environmental health risk detection with GeogDetector[J]. Environmental Modelling and Software, 2012(33): 114-115. DOI: 10.1016/j.envsoft.2012.01.015
[17]水利部.全国水土保持区划(试行)(办水保[2012]512号)[R]. 北京: 水利部, 2012: 1-30.[Ministry of Water Resources. National water and soil conservation zoning(trial)(Water Protection Office[2012] No. 512)[R]. Beijing: Ministry of Water Resources, 2012: 1-30]
[18] 赵锦梅, 徐长林, 马瑞, 等. 东祁连山不同高寒灌丛草地土壤抗蚀性研究[J].水土保持学报, 2016, 30(5): 119-123.[ZHAO Jinmei, XU Changlin, MA Rui, et al. Study on soil anti-erodibility of different alpine shrub grassland in eastern Qilian Mountain[J]. Journal of Soil and Water Conservation, 2016, 30(5): 119-123] DOI: 10.13870/j.cnki.stbcxb.2016.05.020
[19] 陈豪, 丁文广, TANJIA B Z. 基于USLE模型的祁连山国家公园土壤水力侵蚀评价[J]. 中国水土保持科学, 2020, 18(4): 38-44.[CHEN Hao, DING Wenguang, TANJIA B Z. Evaluation of soil water erosion in Qilian Mountain National Park based on USLE model[J]. Science of Soil and Water Conservation, 2020, 18(4): 38-44] DOI: 10.16843/j.sswc.2020.04.005
[20] 陆惠萍, 陈杰, 吕文强, 等. 近20 a祁连山北坡水沙变化及土壤侵蚀特征[J]. 中国水土保持科学, 2022, 20(4): 91-100.[LU Huiping, CHEN Jie, LYU Wenqiang, et al. Changes of water and sediment and soil erosion characteristics on the northern slope of Qilian Mountains in recent 20 years[J]. Science of Soil and Water Conservation, 2022, 20(4): 91-100] DOI: 10.16843/j.sswc.2022.04.012
[21] 童珊, 曹广超, 闫欣, 等. 祁连山南坡土壤侵蚀定量研究与影响因素分析[J]. 水土保持研究, 2022, 29(5): 100-107.[TONG Shan, CAO Guangchao, YAN Xin, et al. Quantitative study on soil erosion and its influencing factors on the south slope of Qilian Mountain[J]. Research of Soil and Water Conservation, 2022, 29(5): 100-107] DOI: 10.13869/j.cnki.rswc.2022.05.027
[22] 周雪如, 李育. 千百年尺度祁连山地区干湿变化对暖期的响应[J]. 地理学报, 2022, 77(5): 1138-1152.[ZHOU Xueru, LI Yu. Response of dry-wet change to millennial and centennial warm periods in the Qilian Mountains[J]. Acta Geographica Sinica, 2022, 77(5): 1138-1152] DOI: 10.11821/dlxb202205007
[23] WANG Lei, CHEN Rensheng, HAN Chuntan, et al. Change characteristics of precipitation and temperature in the Qilian Mountains and Hexi Oasis, Northwestern China[J]. Environmental Earth Sciences, 2019, 78: 284. DOI: 10.1007/s12665-019-8289-x
[24] 付建新, 曹广超, 郭文炯. 祁连山区风速和风向时空变化特征[J].山地学报, 2020, 38(4): 495-506.[FU Jianxin, CAO Guangchao, GUO Wenjiong. Temporal and spatial variation characteristics of average wind speed and direction in the Qilian Mountains, China[J]. Mountain Research, 2020, 38(4): 495-506] DOI: 10.16089/j.cnki.1008-2786.000528
[25] 欧安锋, 柯贤敏, 梁成成, 等. 祁连山区1961—2014年冻融指数时空变化特征[J]. 冰川冻土, 2023, 45(1): 153-164.[OU Anfeng, KE Xianmin, LIANG Chengcheng, et al. Spatial and temporal characteristics of freezing and thawing index in the Qilian Mountains from 1961 to 2014[J]. Journal of Glaciology and Geocryology, 2023, 45(1): 153-164] DOI: 10.7522/j.issn.1000-0240.2023.0011
[26] 王晓琪, 赵雪雁. 人类活动对国家公园生态系统服务的影响——以祁连山国家公园为例[J]. 自然资源学报, 2023, 38(4): 966-982.[WANG Xiaoqi, ZHAO Xueyan. Impacts of human activities on ecosystem services in national parks: A case study of Qilian Mountain National Park[J]. Journal of Natural Resources, 2023, 38(4): 966-982] DOI: 10.31497/zrzyxb.20230409
[27] 赵琛, 张兰慧, 李金麟, 等. 黑河上游土壤含水量的空间分布与环境因子的关系[J]. 兰州大学学报(自然科学版), 2014, 50(3): 338-347.[ZHAO Chen, ZHANG Lanhui, LI Jinlin, et al. Analysis of the relationships between the spatial variations of soil moisture and the environmental factors in the upstream of the Heihe River watershed[J]. Journal of Lanzhou University(Natural Sciences), 2014, 50(3): 338-347] DOI: 10.13885/j.issn.0455-2059.2014.03.008
[28] 付建新, 曹广超, 郭文炯. 1980—2018年祁连山南坡土地利用地形梯度变化及其地形因子地理探测[J]. 水土保持研究, 2021, 28(6): 371-381.[FU Jianxin, CAO Guangchao, GUO Wenjiong. Terrain gradient change of land use and its geographical detector of terrain factors on the south-facing slope of Qilianshan Mountains from 1980 to 2018[J]. Research of Soil and Water Conservation, 2021, 28(6): 371-381] DOI: 10.13869/j.cnki.rswc.2021.06.030
[29] 曹泊. 祁连山东段冷龙岭现代冰川变化研究[D]. 兰州: 兰州大学, 2013: 26-34.[CAO Bo. Glacier changes in the Lenglongling Mountain, Eastern Qilian Shan[D]. Lanzhou: Lazhou University, 2013: 26-34]
[30] 赵军, 黄永生, 师银芳, 等. 2000—2012年祁连山中段雪线与气候变化关系[J]. 山地学报, 2015, 33(6): 683-689.[ZHAO Jun, HUANG Yongsheng, SHI Yinfang, et al. Relationship between sonw line change and climate change in the middle of Qilian Mountains during 2000-2012[J]. Mountain Research, 2015, 33(6): 683-689] DOI: 10.16089/j.cnki.1008-2786.000082
[31] 刘斌涛, 陶和平, 史展, 等. 青藏高原土壤可蚀性K值的空间分布特征[J]. 水土保持通报, 2014, 34(4): 11-16.[LIU Bintao, TAO Heping, SHI Zhan, et al. Spatial distribution characteristics of soil erodibility K value in Qinghai-Tibet Plateau[J]. Bulletin of Soil and Water Conservation, 2014, 34(4): 11-16] DOI: 10.13961/j.cnki.stbctb.2014.04.017
[32] WILLIAMS J R. The erosion-productivity impact calculator(EPIC)model: A case history[J]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1990, 329(1255): 421- 428. DOI: 10.1098/rstb.1990.0184
[33] 陈卓鑫, 王文龙, 郭明明, 等. 黄土高塬沟壑区植被恢复对不同地貌部位土壤可蚀性的影响[J]. 自然资源学报, 2020, 35(2): 387- 398.[CHEN Zhuoxin, WANG Wenlong, GUO Mingming, et al. Effects of vegetation restoration on soil erodibility on differentgeomorphological locations in the loess-tableland and gully region of the Loess Plateau[J]. Journal of Natural Resources, 2020, 35(2): 387- 398] DOI: 10.31497/zrzyxb.20200211
[34] FRYREAR D W, BILBRO J D, SALEH A, et al. RWEQ: Improved wind erosion technology[J]. Journal of Soil and Water Conservation, 2000, 55(2): 183-189. DOI: 10.2489/jswc.55.2.183
[35] 陈正发, 史东梅, 金慧芳, 等. 基于土壤管理评估框架的云南坡耕地耕层土壤质量评价[J]. 农业工程学报, 2019, 35(3): 256- 267.[CHEN Zhengfa, SHI Dongmei, JIN Huifang, et al. Evaluation on cultivated-layer soil quality of sloping farmland in Yunnan based on soil management assessment framework[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 256-267] DOI: 10.11975/j.issn.1002-6819.2019.03.032
[36] PENG Qing, WANG Ranghui, JIANG Yelin, et al. Soil erosion in Qilian Mountain National Park: Dynamics and driving mechanisms[J]. Journal of Hydrology: Regional Studies, 2022, 42: 101144. DOI: 10.1016/j.ejrh.2022.101144
[37] 田培, 贾婷惠, 平耀东, 等. 基于RUSLE和地理探测器的鄂西北土壤侵蚀时空分异与归因[J]. 热带地理, 2023, 43(11): 2216-2228.[TIAN Pei, JIA Tinghui, PING Yaodong, et al. Spatial-temporal differentiation and attribution of soil erosion in northwestern Hubei based on RUSLE and geographic detector[J]. Tropical Geography, 2023, 43(11): 2216-2228] DOI: 10.13284/j.cnki.rddl.003728
[38] 刘彦随, 李进涛. 中国县域农村贫困化分异机制的地理探测与优化决策[J]. 地理学报, 2017, 72(1): 161-173.[LIU Yansui, LI Jintao. Geographic detection and optimizing decision of the differentiation mechanism of rural poverty in China[J]. Acta Geographica Sinica, 2017, 72(1): 161-173] DOI: 10.11821/dlxb201701013
[39] 童珊, 曹广超, 闫欣, 等. 祁连山南坡2000—2020年植被覆盖时空演变及其驱动因素分析[J]. 山地学报, 2022, 40(4): 491-503.[TONG Shan, CAO Guangchao, YAN Xin, et al. Spatial-temporalevolution of vegetation cover changes and its driving factors of vegetation cover on the south slope of the Qilian Mountains, China from 2000 to 2020[J]. Mountain Research, 2022, 40(4): 491-503] DOI: 10.16089/j.cnki.1008-2786.000688
[40] 朱柏露, 杨奇勇, 谢运球, 等. 漓江流域土地石漠化空间分布及驱动因子分析[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 139-150.[ZHU Bailu, YANG Qiyong, XIE Yunqiu, et al. Spatial distribution and driving factors of karst rocky desertification in Lijiang River basin[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 139-150] DOI: 10.16088/j.issn.1001-6600.2020052702
[41] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.[WANG Jinfeng, XU Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134] DOI: 10.11821/dlxb201701010
[42] 马永桃, 任孝宗, 胡慧芳, 等. 基于地理探测器的浑善达克沙地植被变化定量归因[J]. 中国沙漠, 2021, 41(4): 195-204.[MA Yongtao, REN Xiaozong, HU Huifang, et al. Vegetation dynamics and its driving force in Otindag sandy land based on Geodetector[J]. Journal of Desert Research, 2021, 41(4): 195-204] DOI: 10.7522/j.issn.1000-694X.2021.00066
[43] 李子君, 王硕, 林锦阔, 等. 沂河流域土壤可蚀性空间变异研究[J]. 土壤通报, 2019, 50(1): 45-51.[LI Zijun, WANG Shuo, LIN Jinkuo, et al. Spatial variability of soil erodibility in the Yihe River basin[J]. Chinese Journal of Soil Science, 2019, 50(1): 45-51] DOI: 10.19336/j.cnki.trtb.2019.01.07
[44]魏慧, 赵文武, 王晶. 土壤可蚀性研究述评[J]. 应用生态学报, 2017, 28(8): 2749-2759.[WEI Hui, ZHAO Wenwu, WANG Jing. Research progress on soil erodibility[J]. Chinese Journal of Applied Ecology, 2017, 28(8): 2749-2759] DOI: 10.13287/j.1001-9332.201708.011
[45] 牛丽楠, 邵全琴, 刘国波, 等. 六盘水市土壤侵蚀时空特征及影响因素分析[J]. 地球信息科学学报, 2019, 21(11): 1755-1767.[NIU Linan, SHAO Quanqin, LIU Guobo, et al. Analysis on spatiotemporal characteristics and factors of soil erosion in Liupanshui city[J]. Journal of Geo-Information Science, 2019, 21(11): 1755-1767] DOI: 10.12082/dqxxkx.2019.180447
[46] 常亚斌, 朱睿, 肖生春, 等. 1980—2015年阿拉善盟沙地面积变化及其驱动因子[J]. 中国沙漠, 2020, 40(6): 82-90.[CHANG Yabin, ZHU Rui, XIAO Shengchun, et al. Sandy land change from 1980 to 2015 in Alxa League, China and its driving factors[J]. Journal of Desert Research, 2020, 40(6): 82-90] DOI: 10.7522/j.issn.1000-694X.2020.00074
[47] 邹长新, 王燕, 王文林, 等. 山水林田湖草系统原理与生态保护修复研究[J]. 生态与农村环境学报, 2018, 34(11): 961-967.[ZOU Changxin, WANG Yan, WANG Wenlin, et al. Theory of Mountain-River-Forest-Farmland-Lake-Grass system and ecological protection and restoration research[J]. Journal of Ecology and Rural Environment, 2018, 34(11): 961-967] DOI: 10.11934/j.issn.1673-4831.2018.11.001
[48] 杨永春, 张薇, 曹宛鹏, 等. 国家安全视角下的我国西部国土空间规划: 体系完善与基本导向[J]. 自然资源学报, 2021, 36(9): 2264-2280.[YANG Yongchun, ZHANG Wei, CAO Wanpeng, et al. Territory spatial planning of western China from the perspective of national security: Perfect system and basic orientation[J]. Journal of Natural Resources, 2021, 36(9): 2264-2280] DOI: 10.31497/zrzyxb.20210907
[49] 刘祥宏, 尹勤瑞, 辛建宝, 等. 生态植被自然修复及其人工促进技术研究进展与展望[J]. 生态环境学报, 2022, 31(7): 1476-1488.[LIU Xianghong, YIN Qinrui, XIN Jianbao, et al. Technology research progress and prospects of natural vegetation restoration and its artificial promotion[J]. Ecology and Environmental Sciences, 2022, 31(7): 1476-1488] DOI: 10.16258/j.cnki.1674-5906.2022.07.021
[50] 王涛, 高峰, 王宝, 等. 祁连山生态保护与修复的现状问题与建议[J]. 冰川冻土, 2017, 39(2): 229- 234.[WANG Tao, GAO Feng, WANG Bao, et al. Status and suggestions on ecological protection and restoration of Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2017, 39(2): 229-234] DOI: 10.7522/j.issn.1000-0240.2017.0026
[51] WANG Hao, ZHANG Guanghui, LI Ningning, et al. Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China[J]. Catena, 2019, 174: 24-35. DOI: 10.1016/j.catena.2018.11.003
[52] 邹雅婧, 闫庆武, 谭学玲, 等. 渭北矿区土壤侵蚀评估及驱动因素分析[J]. 干旱区地理, 2019, 42(6): 1387-1394.[ZOU Yajing, YAN Qingwu, TAN Xueling, et al. Evaluation of soil erosion and driving factors analysis in Weibei mining area[J]. Arid Land Geography, 2019, 42(6): 1387-1394] DOI: 10.12118/j.issn.1000-6060.2019.06.18
[53] 王涛. 陕北洛河流域降水和植被变化对土壤侵蚀的影响[J]. 江苏农业科学, 2018, 46(20): 295-300.[WANG Tao. Impact of precipitation and vegetation change on soil erosion in the Luohe River basin in northern Shaanxi province[J]. Jiangsu Agricultural Sciences, 2018, 46(20): 295-300] DOI: 10.15889/j.issn.1002-1302.2018.20.074
[54] 王玮, 冯琦胜, 郭铌, 等. 基于长时间序列NDVI资料的我国西北干旱区植被覆盖动态监测[J]. 草业科学, 2015, 32(12): 1969-1979.[WANG Wei, FENG Qisheng, GUO Ni, et al. Dynamic monitoring of vegetation coverage based on long time-series NDVI data sets in northwest arid region of China[J]. Pratacultural Science, 2015, 32(12): 1969-1979] DOI: 10.11829/j.issn.1001-0629.2015-0459

相似文献/References:

[1]谭少华,高银宝,杨培峰*,等.精准高效、共建联防:山地城市灾害识别、综合防治及空间响应--恩施市中心城区的实践[J].山地学报,2019,(03):409.[doi:10.16089/j.cnki.1008-2786.000434]
 TAN Shaohua,GAO Yinbao,YANG Peifeng*,et al.Accuracy, Efficiency, and Collaboration: Identification, Comprehensive Prevention and Space Response of Disasters in Mountain Cities--The Practice of Central Area of Enshi City, Hubei, China[J].Mountain Research,2019,(1):409.[doi:10.16089/j.cnki.1008-2786.000434]
[2]周 鹏,邓 伟*,张少尧,等.太行山区国土空间格局演变特征及其驱动力[J].山地学报,2020,(2):276.[doi:10.16089/j.cnki.1008-2786.000509]
 ZHOU Peng,DENG Wei*,ZHANG Shaoyao,et al.Evolution Characteristics and Its Driving Force of Territory Space Pattern in the Taihang Mountain, China[J].Mountain Research,2020,(1):276.[doi:10.16089/j.cnki.1008-2786.000509]
[3]熊 熙,张仕超*,梁靖茹,等.丘陵山区家庭农场时空拓展特征及驱动力分析——以重庆市江津区为例[J].山地学报,2021,(1):71.[doi:10.16089/j.cnki.1008-2786.000577]
 XIONG Xi,ZHANG Shichao*,LIANG Jingru,et al.Spatiotemporal Expansion Characteristics and Driving Forces of Family Farms in Hilly and Mountainous Areas: A Case Study of Jiangjin District of Chongqing, China[J].Mountain Research,2021,(1):71.[doi:10.16089/j.cnki.1008-2786.000577]
[4]陈 爽,李阳兵*,李明珍.镇域尺度的规模农地演变特征及其驱动机制研究——以重庆奉节县为例[J].山地学报,2021,(1):101.[doi:10.16089/j.cnki.1008-2786.000579]
 CHEN Shuang,LI Yangbing*,LI Mingzhen.Evolution Pattern and Driving Mechanism in Farmland of Scale on Town Level:A Case Study of Fengjie County in Chongqing,China[J].Mountain Research,2021,(1):101.[doi:10.16089/j.cnki.1008-2786.000579]
[5]周 爽,刘邵权,彭 立*.成都市景观格局与生态系统服务的关联效应[J].山地学报,2021,(2):262.[doi:10.16089/j.cnki.1008-2786.000593]
 ZHOU Shuang,LIU Shaoquan,et al.Correlation Effect in the Developing of Landscape Patterns with the Changes in Ecosystem Services in Chengdu City, China[J].Mountain Research,2021,(1):262.[doi:10.16089/j.cnki.1008-2786.000593]
[6]马 琪,王梓柔,赵永宏.西安市“三生空间”时空格局演化与功能测度[J].山地学报,2021,(5):722.[doi:10.16089/j.cnki.1008-2786.000633)]
 MA Qi,WANG Zirou,ZHAO Yonghong.Evolution of Spatial-Temporal Pattern and Functional Measurement of “Production-Living-Ecological” Space in Xi'an, China[J].Mountain Research,2021,(1):722.[doi:10.16089/j.cnki.1008-2786.000633)]
[7]邱俊杰ab,靳建辉ab*,任永青b,等.福建汀江流域新石器—青铜时期聚落遗址分布特征及其环境背景[J].山地学报,2021,(6):791.[doi:10.16089/j.cnki.1008-2786.000639]
 QIU Junjieab,JIN Jianhuiab*,REN Yongqingb,et al.Distribution Characteristics and Environmental Background of the Settlements from the Neolithic to the Bronze Age in the Tingjiang River basin, Fujian Province, China[J].Mountain Research,2021,(1):791.[doi:10.16089/j.cnki.1008-2786.000639]
[8]王 建,赵牡丹*,李健波,等.基于MODIS时序数据的秦巴山区生态环境质量动态监测及驱动力分析[J].山地学报,2021,(6):830.[doi:10.16089/j.cnki.1008-2786.000642]
 WANG Jian,ZHAO Mudan*,LI Jianbo,et al.Dynamic Monitoring and Driving Forces of Eco-Environmental Quality in the Qinba Mountains Based on MODIS Time-Series Data[J].Mountain Research,2021,(1):830.[doi:10.16089/j.cnki.1008-2786.000642]
[9]王永红,鲁 恒*.2001—2018年云南省植被变化及驱动力[J].山地学报,2022,(4):531.[doi:10.16089/j.cnki.1008-2786.000691]
 WANG Yonghong,LU Heng*.Driving Force of Vegetation Cover Change in Yunnan Province from 2001 to 2018[J].Mountain Research,2022,(1):531.[doi:10.16089/j.cnki.1008-2786.000691]
[10]涂安国,莫明浩*,李 英,等.2000—2014年江西东江源区水源涵养量时空变化[J].山地学报,2022,(5):694.[doi:10.16089/j.cnki.1008-2786.000704]
 TU Anguo,MO Minghao*,LI Ying,et al.Spatio-Temporal Variation of Water Conservation in the Source Area of the Dongjiang River in Jiangxi Province of China from 2000 to 2014[J].Mountain Research,2022,(1):694.[doi:10.16089/j.cnki.1008-2786.000704]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-10-19; 改回日期(Accepted date):2024- 02-18
基金项目(Foundation item): 国家自然科学基金(41701321); 甘肃省教育科技创新项目(2023A-004)。[National Natural Science Foundation of China(41701321); Education Technology Innovation Project in Gansu Province(2023A-004)]
作者简介(Biography): 崔晓薇(1999-),女,河北沧州人,硕士研究生,主要研究方向:自然灾害防治。[CUI Xiaowei(1999-), female, born in Cangzhou, Hebei province, M. Sc. candidate, research on natural disaster prevention and control] E-mail: 2021212806@nwnu.edu.cn
*通讯作者(Corresponding author): 张喜风(1986-),女,博士,副教授,主要研究方向:流域生态水文/水土流失过程。[ZHANG Xifeng(1986-), female, Ph.D., associate professor, research on watershed ecological hydrology/soil erosion processes] E-mail: zhangxifeng@nwnu.edu.cn
更新日期/Last Update: 2024-01-30