[1]宋扎磋,王腊梅,张 莉,等.川西高山-亚高山草地群落特征及稳定性对增温的响应[J].山地学报,2023,(3):348-360.[doi:10.16089/j.cnki.1008-2786.000753 ]
 SONG Zhacuo,WANG Lamei,ZHANG Li,et al.Response of Community Characteristics and Stability of Alpine-Subalpine Grassland to Warming in Western Sichuan of China[J].Mountain Research,2023,(3):348-360.[doi:10.16089/j.cnki.1008-2786.000753 ]
点击复制

川西高山-亚高山草地群落特征及稳定性对增温的响应
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第3期
页码:
348-360
栏目:
山地环境
出版日期:
2023-05-20

文章信息/Info

Title:
Response of Community Characteristics and Stability of Alpine-Subalpine Grassland to Warming in Western Sichuan of China
文章编号:
1008-2786-(2023)3-348-9
作者:
宋扎磋1王腊梅2张 莉3陆徐伟1陈程浩1杨 燕4 索南吉15*
(1. 青海师范大学 生命科学学院,西宁 810016; 2. 甘孜藏族自治州林业和草原局,四川 甘孜 626001; 3. 广元市朝天区应急管理局,四川 广元 628021; 4. 中国科学院、水利部成都山地灾害与环境研究所,成都 610041; 5. 青海师范大学 高原科学与可持续发展研究院,西宁 810016)
Author(s):
SONG Zhacuo1 WANG Lamei2 ZHANG Li3 LU Xuwei1 CHEN Chenghao1 YANG Yan4 SUO Nanji15*
(1. Life Science College, Qinghai Normal University, Xining 810016, China; 2.Forest and Grassland Bureau of Ganzi Tibetan Autonomous Prefecture, Ganzi 626001, Sichuan, China; 3.Chaotian Emergency Management Bureau of Guangyuan City, Guangyuan 628021, Sichuan, China; 4. Chengdu Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Resources, Chengdu 610041, China; 5.Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016,China)
关键词:
高山-亚高山草地 增温 物种丰富度 地上净初级生产力 群落生物量时间稳定性
Keywords:
alpine grassland warming species richness above-ground NPP temporal stability of community biomass
分类号:
Q14
DOI:
10.16089/j.cnki.1008-2786.000753
文献标志码:
A
摘要:
川西高山-亚高山区域作为中国长江、黄河上游的重要生态屏障,拥有丰富的生物多样性。川西高山-亚高山草地生态系统对增温变化敏感,但对其草地生态系统群落及其稳定性对增温的响应研究仍存在不足。由于指标选取单一、研究尺度小等研究方法问题,已有研究结论的代表性不足。为了深入了解这一生态系统在不同海拔高度上对气候变暖的响应特征,本研究在贡嘎山东北坡雅家埂峡谷地带,沿海拔3000~4130 m设置4个高山-亚高山草地样地,采用两种常用的模拟增温模式(OTC增温和带草皮下移增温)模拟环境温度升高,研究2012—2017年期间,不同海拔梯度上草地物种丰富度、群落高度和盖度、地上净初级生产力对增温的响应特征,以及这些特征变化与群落生物量时间稳定性的关系。结果表明:(1)OTC增温仅在高海拔寒冷样地降低了物种丰富度,不影响中低海拔样地的物种丰富度; 下移增温增加了高海拔寒冷样地的物种丰富度,却降低了低海拔温暖样地的物种丰富度;(2)OTC增温仅增加了高海拔寒冷样地的群落高度,下移增温显著增加了所有海拔梯度上的植被高度;(3)在两个中间海拔梯度样地,两种增温模式都降低了杂草类植物盖度,却增加了莎草与禾草的盖度;(4)仅有下移增温显著增加了高海拔寒冷样地的地上净初级生产力,各功能群地上净初级生产力的变化存在海拔差异;(5)位于灌草交错带3850 m样地的群落生物量时间稳定性最高,而位于4130 m的高海拔寒冷样地的群落生物量时间稳定性最弱。研究表明,高海拔寒冷生境的草地群落组成结构和地上净初级生产力易受到气候变暖的影响,趋于不稳定。本研究可为川西高山草地生态系统应对未来气候变暖的生态保护管理与政策制定提供科学依据。
Abstract:
As an important ecological barrier in the upper reaches of the Yangtze River and the Yellow River, the alpine-subalpine region in western Sichuan is rich in biodiversity. The alpine-subalpine grassland ecosystem in the region is sensitive to local warming changes under the circumstance of global warming, but there were insufficient studies on the response of grassland ecosystem communities and their stability to warming. This was quite possibly due to poor research methodologies, such as the improper application of single indicator in a model or small research scales extending to a large scale, inevitably making parts of research conclusions are neither comprehensive nor convincing.

参考文献/References:

[1] HECTOR A, SCHMID B, BEIERKUHNLEIN C, et al. Plant diversity and productivity experiments in Europeangrasslands[J]. Science, 1999, 286(5442): 1123-1127. DOI: 10.1126/science.286.5442.1123
[2] LI Delong, WU Shuyao, LIU Laibao, et al. Vulnerability of the global terrestrial ecosystems to climate change[J]. Global Change Biology, 2018, 24(9): 4095-4106. DOI: 10.1111/gcb.14327
[3] 李宗省, 何元庆, 辛惠娟, 等. 我国横断山区1960—2008年气温和降水时空变化特征[J].地理学报, 2010, 65(5): 563-579. [LI Zongxing, HE Yuanqing, XIN Huijuan, et al. Spatio-temporal variations of temperature and precipitation in Mts. Hengduan region during 1960—2008[J]. ActaGeograqhicaSinica, 2010, 65(5): 563-579]
[4] 郭剑英, 王根绪. 贡嘎山风景名胜区的气候变化特征及其对旅游业的影响[J]. 冰川冻土, 2011, 33(1): 214-219. [GUO Jianying, WANG Genxu. Climate change on the Mt. Gongga and its impact on tourism [J]. Journal of Glaciology and Geocryology, 2011, 33(1): 214-219]
[5] 钟鼎杰, 杨存建. 2001—2020年川西高原植被EVI时空变化特征及气候因子驱动力分析[J].水土保持研究, 2022, 29(4): 223-230. [ZHONG Dingjie, YANG Cunjian. Spatioteporal variation characteristics of vegetation EVI and driving forces of climate factors in western Sichuan Plateau from 2001 to 2020 [J]. Research of Soil and Water Conservation, 2022, 29(4): 223-230] DOI: 10.13869/j.cnki.rswc.2022.04.006
[6] 王叶兰, 杨鑫, 郝利娜.川西高原植被物候及其对气候变化的响应[J].长江科学院院报, 2023, 40(5): 77-84+93. [WANG Yelan, YANG Xin, HAO Lina. Phenology of vegetation and its response to climate change in the western Sichuan Plateau [J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(5): 77-84+93] DOI: 10.11988/ckyyb.20220041
[7] 钟祥浩. 贡嘎山高山生态系统观测试验站总体设想[J]. 山地研究, 1989, 7(4): 266. [ZHONG Xianghao.Overall idea of the Gongga Mountain Alpine Ecosystem Observation and Experimental Station[J].Mountain Research, 1989, 7(4): 266]
[8] YAN Yingjie, NIU Shuli, HE Yicheng, et al. Changing plant species composition and richness benefit soil carbon sequestration under climate warming[J]. Functional Ecology, 2022, 36(12): 2906-2916. DOI: 10.1111/1365-2435.14218
[9] YANG Yan, HALBERITTER A H, KLANDERUD K, et al. Transplants, Open Top Chambers(OTCs)and gradient studies askdifferent questions in climate change effects studies[J]. Frontiers in Plant Science, 2018, 9: 1574. DOI: 10.3389/fpls.2018.01574
[10] QUAN Quan, ZHANG Fangyue, MENG Cheng, et al. Shifting biomass allocation determines community water use efficiency under climate warming[J]. Environmental Research Letters, 2020, 15(9): 094041. DOI: 10.1088/1748-9326/aba472
[11] CHEN Huai, ZHU Qiuan, PENG Changhui, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2013, 19(10): 2940-2955. DOI: 10.1111/gcb.12277
[12] YAN Wenchao, WANG Yuanyun, CHAUDHARY P, et al. Effects of climate change and human activities on net primary production of wetlands on the Zoige Plateau from 1990 to 2015[J]. Global Ecology and Conservation, 2022, 35: e02052. DOI: 10.1016/j.gecco.2022.e02052
[13] SHI Ning, NAUDIYAL N, WANG Jinniu, et al. Assessing the impact of climate change on potential distribution of meconopsis punicea and its influence on ecosystem services supply in the southeastern margin of Qinghai-Tibet Plateau[J]. Frontiers in Plant Science, 2022, 12: 830119. DOI: 10.3389/fpls.2021.830119
[14] 何佳莉, 王金牛, 周天阳, 等,发育阶段和海拔对岷江源区陇蜀杜鹃小枝功能性状及生物量分配的影响[J]. 应用生态学报, 2020, 31(12): 4027-4034.[HE Jiali, WANG Jinniu, ZHOU Tianyang, et al. Effects of growth stage and altitude on twig functional traits and biomass allocation of Rhododendron przewalskii in the headwater region of Minjiang River, China[J]. Chinese Journal of Aplied Ecology, 2020, 31(12): 4027-4034]DOI: 10.13287/j.1001-9332.202012.001
[15] NAUDIYAL N, WANG Jinniu, WU Ning, et al. Potential distribution of Abies, Picea, and Juniperus species in the sub-alpine forest of Minjiang headwater region under current and future climate scenarios and its implications on ecosystem services supply[J]. Ecological Indicators, 2021, 121: 107131. DOI: 10.1016/j.ecolind.2020.107131
[16] 贾龙玉, 管增艳, 常瑞英, 等. 贡嘎山树线上方杜鹃灌木径向生长对气候变化的响应特征[J].山地学报, 2021, 39(5): 646-657. [JIA Longyu, GUAN Zengyan, CHANG Ruiying, et al. Response of radical growth of Rhododendron faberi subsp. Prattii to climate change above treeline in the Gongga Mountain[J]. Mountain Research, 2021, 39(5): 646-657] DOI: 10.16089/j.cnki.1008-2786.000627
[17] 刘勤, 王玉宽, 彭培好, 等. 气候变化下四川省物种的分布规律及迁移特征[J]. 山地学报, 2016, 34(6): 716-723. [LIU Qin, WANG Yukuan, PENG Peihao, et al.Characteristics of distribution and migration of species in Sichuan under the climate change[J]. Mountain Research, 2016, 34(6): 716-723] DOI: 10.16089/j.cnki.1008-2786.000178
[18] VANDVIK V, HALBRITTER A H, YANG Yan, et al. Plant traits and vegetation data from climate warming experiments along an 1100m elevation gradient in Gongga Mountains, China[J]. Scientific Data, 2020, 7(1): 189. DOI: 10.1038/s41597-020-0529-0
[19] KLEIN J A, HARTE J, ZHAO Xinquan. Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau[J]. Ecological Applications, 2007, 17(2): 541-557. DOI: 10.1890/05-0685
[20] 张莉.模拟增温对贡嘎山高山草甸群落结构和功能的影响[D].成都: 中国科学院、水利部成都山地灾害与环境研究所, 2018: 41-43. [ZHANG Li. Effects of experimental warming on community structure and function in alpine meadow, Gongga Mountain[D]. Chengdu: Institute of Mountain Hazards and Environment, CAS, 2018: 41-43]
[21] LIANG Maowei, LIANG Cunzhu, HAUTIER Y, et al. Grazing-induced biodiversity loss impairs grassland ecosystem stability at multiple scales[J]. Ecology Letters, 2021, 24(10): 2054-2064. DOI: 10.1111/ele.13826
[22] WANG Shaopeng, LAMY T, HALLETT L M, et al. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: Linking theory to data[J]. Ecography, 2019, 42(6): 1200-1211. DOI: 10.1111/ecog.04290
[23] GANJURJAV H, GAO Qingzhu, GORNISH E S, et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau [J]. Agricultural and Forest Meteorology, 2016, 223: 233-240. DOI: 10.1016/j.agrformet.2016.03.017
[24] ELMENDORF S C, HENRY G H R, HOLLISTER R D, et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming[J]. Nature Climate Change, 2012, 2(6): 453-457. DOI: 10.1038/nclimate1465
[25] HINZMAN L D, BETTEZ N D, BOLTON W R, et al. Evidence and implications of recent climate change in northern Alaska and other Arctic regions[J]. Climatic Change, 2005, 72(3): 251-298. DOI: 10.1007/s10584-005-5352-2
[26] ZHU Juntao, ZHANG Yangjian, YANG Xian, et al. Warming alters plant phylogenetic and functional community structure[J]. Journal of Ecology, 2020, 108(6): 2406-2415. DOI: 10.1111/1365-2745.13448
[27] LIU Yinzhan, MU Junpeng, NIKLAS K J, et al. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan Plateau[J]. New Phytologist, 2012, 195(2): 427-436. DOI: 10.1111/j.1469-8137.2012.04178.x
[28] GRIME J P, Competitive exclusion in herbaceous vegetation[J]. Nature, 1973, 242(5396): 344-347. DOI: 10.1038/242344a0
[29] 牛书丽, 韩兴国, 马克平, 等. 全球变暖与陆地生态系统研究中的野外增温装置[J]. 植物生态学报, 2007, 31(2): 262-271. [NIU Shuli, HAN Xingguo, MA Keping, et al. Field facilities in global warming and terrestrial ecosystem research[J]. Journal of Plant Ecology, 2007, 31(2): 262-271]
[30] GRABHERR G, GOTTFRIED M, PAULI H. Climate effects on mountain plants [J]. Nature, 1994, 369(6480): 448-448. DOI: 10.1038/369448a0
[31] WALTHER G R, BEISSNER S, BURGA C A. Trends in the upward shift of alpine plants[J]. Journal of Vegetation Science, 2005, 16(5): 541-548. DOI: 10.1658/1100-9233(2005)16[541: Tituso]2.0.Co; 2
[32] WANG Qi, ZHANG Zhenhua, DU Rui, et al. Richness of plant communities plays a larger role than climate in determining responses of species richness to climate change[J]. Journal of Ecology, 2019, 107(4): 1944-1955. DOI: 10.1111/1365-2745.13148
[33] SAETERSDAL M, BIRKS H J B. A comparative ecological study of Norwegian mountain plants in relation to possible future climatic change[J]. Journal of Biogeography, 1997, 24(2): 127-152. DOI: 10.1046/j.1365-2699.1997.00096.x
[34] ALWARD R D, DETLING J K, MILCHUNAS D G.Grassland vegetation changes and nocturnal global warming[J]. Science, 1999, 283(5399): 229-231. DOI: 10.1126/science.283.5399.229
[35] 李英年, 赵亮, 赵新全, 等.5年模拟增温后矮嵩草草甸群落结构及生产量的变化[J]. 草地学报, 2004, 12(3): 236-239. [LI Yingnian, ZHAO Liang, ZHAO Xinquan, et al. Effects of a 5-years mimic temperature increase to the structure and productivity of KobresiaHumilis meadow[J]. ActaAgrestiaSinica, 2004, 12(3): 236-239]
[36] 周华坤, 周兴民, 赵新全. 模拟增温效应对矮嵩草草甸影响的初步研究[J].植物生态学报, 2000, 24(5): 547-553. [ZHOU Huakun, ZHOU Xinmin, ZHAO Xinquan. A preliminary study of the influence of simulated greenhouse effect on a KobresiaHumilis meadow[J]. ActaPhytoecologicalSinica, 2000, 24(5): 547-553]
[37] WALKER M D, WEBBER P J, ARNOLD E H, et al. Effects of interannual climate variation on aboveground phytomass in alpine vegetation[J]. Ecology, 1994, 75(2): 393-408. DOI: 10.2307/1939543
[38] 宗宁, 柴曦, 石培礼, 等. 藏北高寒草甸群落结构与物种组成对增温与施氮的响应[J].应用生态学报,2016, 27(12): 3739-3748. [ZONG Ning, CHAI Xi, SHI Peili, et al. Responses of plant community structure and species composition to warming and N addition in an alpine meadow,northern Tibetan Plateau,China [J]. Chinese Journal of Applied Ecology, 2016, 27(12): 3739-3748] DOI: 10.13287/j.1001-9332.201612.007
[39] 夏建阳, 鲁芮伶, 朱辰, 等. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020,44(5): 494-514. [XIA Jianyang, LU Ruiling, ZHU Chen, et al. Response and adaptation of terrestrial ecosystem processes to climate warming[J].Chinese Journal of Plant Ecology, 2020, 44(5): 494-514] DOI: 10.17521/cjpe.2019.0323
[40] WALKER M D, WAHREN C H, HOLLISTER R D, et al. Plant community responses to experimental warming across the tundra biome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(5): 1342-1346. DOI: 10.1073/pnas.0503198103
[41] EDWARDS M, HENRY G H R.The effects of long-term experimental warming on the structure of three High Arctic plant communities[J]. Journal of Vegetation Science, 2016, 27(5): 904-913. DOI: 10.1111/jvs.12417
[42] HUDSON J M G, HENRY G H R. High Arctic plant community resists 15 years of experimental warming[J]. Journal of Ecology, 2010, 98(5): 1035-1041. DOI: 10.1111/j.1365-2745.2010.01690.x
[43] GUNDERSON C A, WULLSCHLEGER S D. Photosynthetic acclimation in trees to rising atmospheric co2: A broader perspective[J]. Photosynthesis Research, 1994, 39(3): 369-388. DOI: 10.1007/bf00014592
[44] 崔海军.高山草地植物群落对气候变化的响应研究[D].成都: 中国科学院、水利部成都山地灾害与环境研究所, 2016: 30-40. [CUI Haijun.Study on the response of plant community in alpine grassland to climate change[D]. Chengdu: Institute of Mountain Hazards and Environment, CAS, 2016: 30-40]
[45] 沈其荣.土壤肥料学通论[M]. 北京: 高等教育出版社, 2021: 168-170. [SHEN Qirong. Soil and fertilizer sciences[M]. Beijing: China Higher Education Press, 2021: 168-170]
[46] DEBOUK H, DE BELLO F, SEBASTIA M T. Functional trait changes, productivity shifts and vegetation stability in mountain grasslands during a short-term warming[J]. Plos One, 2015, 10(10): e0141899. DOI: 10.1371/journal.pone.0141899
[47] CHEN Ji. LUO Yiqi, XIA Jianyang, et al. Differential responses of ecosystem respiration components to experimental warming in a meadow grassland on the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2016, 220: 21-29. DOI: 10.1016/j.agrformet.2016.01.010
[48] BHATTARAI P, TIMILSINA B, PARAJULI R, et al. Distinct response of high-latitude ecosystem and high-altitude alpine ecosystem to temperature and precipitation dynamics: A meta-analysis of experimental manipulation studies[J]. Progress in Physical Geography, 2022, 46(6): 909-921. DOI: 10.1177/03091333221114866
[49] KIMBALL J S, MCDONALD K C, ZHAO M. Spring thaw and its effect on terrestrial vegetation productivity in the western arctic observed from satellite microwave and optical remote sensing[J]. Earth Interactions, 2006, 10(21): 1-22. DOI: 10.1175/EI187.1
[50] 潘瑞炽.植物生理学[M].北京: 高等教育出版社, 2012: 78-90. [PAN Ruichi. Plant physiology[M]. Beijing: China Higher Education Press, 2012: 78-90]
[51] ROBINSON C H, WOOKEY P A, PARSONS A N, et al. Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath[J]. Oikos, 1995, 74(3): 503-512. DOI: 10.2307/3545996
[52] SHAVER G R, CANADELL J, CHAPIN F S, et al. Global warming and terrestrial ecosystems: A conceptual framework for analysis[J]. Bioscience, 2000, 50(10): 871-882. DOI: 10.1641/0006-3568(2000)050[0871: Gwatea]2.0.Co; 2
[53] SALESKA S R, HARTE J, TORN M S. The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow[J]. Global Change Biology, 1999, 5(2): 125-141. DOI: 10.1046/j.1365-2486.1999.00216.x
[54] 龚春梅, 白娟, 梁宗锁. 植物功能性状对全球气候变化的指示作用研究进展[J]. 西北植物学报, 2011, 31(11): 2355-2363. [GONG Chunmei, BAI Juan, LIANG Zongsuo. Advance on indicating functions of plant functional traits to global climate changes[J]. Acta Bot. Boreal. Occident. Sin, 2011, 31(11): 2355-2363]
[55] ALEXANDER J M, DIEZ J M, LEVINE J M. Novel competitors shape species' responses to climate change [J]. Nature, 2015, 525(7570): 515-518. DOI: 10.1038/nature14952
[56] 王如松, 马世骏. 边缘效应及其在经济生态学中的应用[J]. 生态学杂志, 1985(2): 38-42. [WANG Rusong, MA Shijun. Edge effect and its application in economic ecology[J]. Journal of Ecology, 1985(2): 38-42]
[57] 王巍巍, 贺达汉. 生态景观边缘效应研究进展[J].农业科学研究, 2012, 33(3): 62-66. [WANG Weiwei, HE Dahan. Research progress of the edge effect of ecological landscape [J].Journal of Agricultural Sciences, 2012, 33(3): 62-66]
[58] CHAPIN F S, SHAVER G R, GIBLIN A E, et al. Responses of arctic tundra to experimental and observed changes in climate[J]. Ecology, 1995, 76(3): 694-711. DOI: 10.2307/1939337
[59] CHAPIN F S, SHAVER G R. Physiological and growth responses of arctic plants to a field experiment simulating climatic change[J]. Ecology, 1996, 77(3): 822-840. DOI: 10.2307/2265504

相似文献/References:

[1]李树鑫,卢元兵,段宝利,等.杨树(Populus)生理生态特性对增温、大气CO2浓度升高和干旱响应的Meta分析[J].山地学报,2017,(05):636.[doi:10.16089/j.cnki.1008-2786.000262]
 LI Shuxin,LU Yuanbin,DUAN Baoli,et al.A Meta-analysis of the Response of Populus to Warming, Increased CO2 and Drought[J].Mountain Research,2017,(3):636.[doi:10.16089/j.cnki.1008-2786.000262]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-02-17; 改回日期(Accepted date): 2023-06-06
基金项目(Foundation item): 国家自然科学基金(32160285); 四川省科技计划引智成果示范推广项目(2022ZHYZ0005); 青海省科技厅自然科学基金青年项目(2020-ZJ-952Q); [National Natural Science Foundation of China(32160285); Sichuan Science and Technology Program(2022ZHYZ0005); Natural Science Foundation of Science and Technology Department of Qinghai Province(2020-ZJ-952Q)]
更新日期/Last Update: 2023-05-30