[1]闫戈丁,景海涛*,何 湜,等.太行山区生态环境质量时空变化与演变趋势[J].山地学报,2023,(3):335-347.[doi:10.16089/j.cnki.1008-2786.000752 ]
 YAN Geding,JING Haitao*,HE Shi,et al.Spatial-Temporal Variation and Evolutionary Trends of Eco-Environment Quality in the Taihang Mountains, China[J].Mountain Research,2023,(3):335-347.[doi:10.16089/j.cnki.1008-2786.000752 ]
点击复制

太行山区生态环境质量时空变化与演变趋势
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第3期
页码:
335-347
栏目:
山地环境
出版日期:
2023-05-20

文章信息/Info

Title:
Spatial-Temporal Variation and Evolutionary Trends of Eco-Environment Quality in the Taihang Mountains, China
文章编号:
1008-2786-(2023)3-335-13
作者:
闫戈丁景海涛*何 湜李 慧郭桓超
(河南理工大学 测绘与国土信息工程学院,河南 焦作 454000)
Author(s):
YAN Geding JING Haitao* HE Shi LI Hui GUO Huanchao
(School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China)
关键词:
遥感生态指数 生态环境质量 Mann-Kendall 趋势分析 时空变化 太行山
Keywords:
Remote Sensing Ecological Index(RSEI) eco-environment quality Mann-kendall trend analysis spatial-temporal variation the Taihang Mountains
分类号:
X87; X821
DOI:
10.16089/j.cnki.1008-2786.000752
文献标志码:
A
摘要:
人类活动不可避免地会对区域生态系统造成一定程度影响。客观评价生态环境质量,是有效控制改善生态环境质量,实现可持续发展的前提。生态环境质量变化是多因素共同作用结果,相比于其他研究方法,利用遥感数据评估生态环境的遥感生态指数(RSEI)可以快速、全面、高效地监测生态环境状态。太行山脉是华北平原与黄土高原的分界线,受到自然环境变化以及人类活动影响,植被一度大幅减少,水土流失严重。本研究以2001—2021年Landsat遥感影像为数据源,采用RSEI为计算指标,结合Mann-Kendall 趋势分析与Moran's I指数,基于GEE云平台开展太行山生态环境质量的时空格局以及变化趋势研究。研究结果表明:(1)2001—2021年RSEI均值为0.519,时间上呈现先下降后增加趋势,空间上呈中间高四周低的分布特征;(2)太行山地区生态环境质量有明显的空间自相关性,生态环境质量高-高聚类多集中于山区的林地、草地,而低-低聚类多集中于平原的人造地表以及耕地;(3)研究区域生态环境质量改善地区多位于西部,而东部地区存在持续性退化区域。整体上,未来生态变化趋势主要以改善提升为主,但仍有21.49%的区域存在退化趋势。本研究可为区域生态环境动态监测治理与可持续发展提供科学参考。
Abstract:
Human activities will inevitably have some negative impact on regional ecosystems. Changes in eco-environment quality are a result of joint action of multiple factors. Objective evaluation of ecological environment quality is the premise of effective control and improvement of ecological environment quality and sustainable development. The change in the quality of the ecological environment is the result of multiple factors, and compared with other research methods, the use of remote sensing data to evaluate the Remote Sensing Ecological Index(RSEI)can rapidly, comprehensively, and efficiently monitor the ecological environment status.

参考文献/References:

[1] 刘一良, 张景, 王丝丝, 等. “全球生态环境遥感监测年度报告”回顾: 2012—2021[J]. 遥感学报, 2022, 26(10): 2106-2120. [LIU Yiliang, ZHANG Jing, WANG Sisi, et al. Global ecosystems and environment observation: Annual report from China(GEOARC): 2012—2021[J]. National Remote Sensing Bulletin, 2022, 26(10): 2106-2120] DOI: 10.11834/jrs.20222339
[2] 孙金龙, 黄润秋. 以习近平生态文明思想为指引推动生态文明建设实现新进步[J]. 环境保护, 2021, 49(15): 8-10. [SUN Jinlong, HUANG Runqiu. Taking Xi Jinping's ecological civilization thought as a guide to promote the construction of ecological civilization and realize new progress[J]. Environmental Protection, 2021, 49(15): 8-10]
[3] 于淑会, 闫秋宇, 邓伟, 等. 基于生态补偿分析的山区“造血式”补偿模式探讨——以太行山河北段为例[J]. 山地学报, 2021, 39(6): 879-890. [YU Shuhui, YAN Qiuyu, DENG Wei, et al. A“hematopietic ecological compensation”mode appliable to the Hebei sections of the Taihang Mountain area,China[J]. Mountain Research, 2021, 39(6): 879-890] DOI: 10.16089/j.cnki.1008-2786.000646
[4] 孙彩霞, 杨帆, 胡晋. 基于遥感数据的新生态环境指数评价[J]. 测绘通报, 2021(11): 12-15. [SUN Caixia, YANG Fan, HU Jin. New ecological index evaluation based on remote sensing data[J]. Bulletin of Surveying and Mapping, 2021(11): 12-15] DOI: 10.13474/j.cnki.11-2246.2021.330
[5] 宗加权, 白淑英, 冯朝阳, 等. 基于连续时间序列NDVI数据的中国生态状况时空变化特征[J]. 水土保持研究, 2021, 28(1): 132-138. [ZONG Jiaquan, BAI Shuying, FENG Chaoyang, et al. Spatiotemporal variation characteristics of ecological status in China based on continuous time series NDVI data[J]. Research of Soil and Water Conservation, 2021, 28(1): 132-138] DOI: 10.13869/j.cnki.rswc.2021.01.017
[6] 廖成浩, 曾艳, 姚昆, 等. 江西植被EVI时空动态监测及驱动因素分析[J]. 云南大学学报(自然科学版), 2022, 44(5): 981-989. [LIAO Chenghao, ZENG Yan, YAO Kun, et al. Spatio-temporal dynamic monitoring and drivingfactor analysis of vegetation EVI in Jiangxi province[J]. Journal of Yunnan University(Natural Sciences Edition), 2022, 44(5): 981-989] DOI: 10.7540/j.ynu.20210547
[7] 江斯达, 占文凤, 杨俊, 等. 局地气候分区框架下城市热岛时空分异特征研究进展[J]. 地理学报, 2020, 75(9): 1860-1878.[JIANG Sida, ZHAN Wenfeng, YANG Jun, et al. Urban heat island studies based on local climate zones: A systematic overview [J]. Acta Geographica Sinica, 2020, 75(9): 1860-1878] DOI: 10.11821/dlxb202009004
[8] 郭艺, 甘甫平, 闫柏琨, 等.1948—2021年河南省土壤含水量时空分布特征及其影响因素研究[J]. 自然资源遥感, 2023: 1-13. [GUO Yi, GAN Fuping, YAN Baikun, et al. Spatial and temporal distribution characteristics of soil moisture and its influencing factors in Henan provience in 1948—2021[J]. Remote Sensing for Natural Resources, 2023: 1-13] DOI: 10.6046/zrzyyg.2022200
[9] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5): 889-897. [XU Hanqiu. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5): 889-897]
[10] 杜高奇, 李自强, 赵勇, 等. 基于RSEI的黄河流域生态环境质量监测与驱动因素分析[J]. 水利水电技术(中英文), 2022, 53(12): 81-93. [DU Gaoqi, LI Ziqiang, ZHAO Yong, et al. RSEl-based analysis on eco-environment quality monitoring and driving factors of Yellow River basin[J]. Water Resources and Hydropower Engineering, 2022, 53(12): 81-93] DOI: 10.13928/j.cnki.wrahe.2022.12.009
[11] 柯丽娜, 徐佳慧, 王楠, 等. 基于遥感生态指数的滨海湿地生态质量变化评价——以辽东湾北部区为例[J]. 生态环境学报, 2022, 31(7): 1417-1424. [KE Lina, XU Jiahui, WANG Nan, et al. Evaluation of ecological quality of coastal wetland based on remote sensing ecological index: A case study of northern Liaodong Bay[J]. Ecology and Environmental Sciences, 2022, 31(7): 1417-1424] DOI: 10.16258/j.cnki.1674-5906.2022.07.014
[12] 褚馨德, 贾伟, 张峻豪, 等. 基于RSEI模型的祁连山自然保护区生态环境质量评价[J]. 环境监测管理与技术, 2022, 34(1): 38-42. [CHU Xinde, JIA Wei, ZHANG Junhao, et al. Ecological environment quality evaluation of Qilian Mountain nature reserve based on RSEI model[J]. The Administration and Technique of Environmental Monitoring, 2022, 34(1): 38-42] DOI: 10.19501/j.cnki.1006-2009.2022.01.005
[13] 郭城, 陈颖彪, 郑子豪, 等. 顾及时空背景的遥感生态指数适用性分析——以粤港澳大湾区为例[J]. 地理与地理信息科学, 2021, 37(5): 23-30. [GUO Cheng, CHEN Yingbiao, ZHENG Zihao, et al. Applicability analysis of RSEI considering spatio-temporal background: A case study of Guangdong-Hong Kong-Macao Greater Bay area[J]. Geography and Geo-Information Science, 2021, 37(5): 23-30] DOI: 10.3969/j.issn.1627-0504.2021.05.004
[14] 宋珂, 王玉军, 李胤. 1999—2020年长江经济带(江苏段)生态环境变化监测及人类活动驱动分析[J]. 测绘通报, 2021(2): 7-12. [SONG Ke, WANG Yujun, LI Yin. Monitoring of ecological environment changes in the Yangtze River Economic Belt(Jiangsu province)from 1999 to 2020 and analysis of the driving forces of human activities[J]. Bulletin of Surveying and Mapping, 2021(2): 7-12] DOI: 10.13474/j.cnki.11-2246.2021.0034
[15] XU Hanqiu, WANG Meiya, SHI Tingting, et al. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index(RSEI)[J]. Ecological Indicators, 2018, 93: 730-740. DOI: 10.1016/j.ecolind.2018.05.055
[16] 赵忠明, 高连如, 陈东, 等. 卫星遥感及图像处理平台发展[J]. 中国图象图形学报, 2019, 24(12): 2098-2110. [ZHAO Zhongming, GAO Lianru, CHEN Dong, et al. Development of satellite remote sensing and image processing platform[J]. Journal of Image and Graphics, 2019, 24(12): 2098-2110] DOI: 10.11834/jig.190450
[17] MUTANGA O, KUMAR L. Google Earth Engine applications[J]. Remote Sensing, 2019, 11(5): 591. DOI: 10.3390/rs1105 0591
[18] 郭永强, 王乃江, 褚晓升, 等. 基于Google Earth Engine分析黄土高原植被覆盖变化及原因[J]. 中国环境科学, 2019, 39(11): 4804-4811. [GUO Yongqiang, WANG Naijiang, CHU Xiaosheng, et al. Analyzing vegetation coverage changes and its reasons on the Loess Plateau based on Google Earth Engine[J]. China Environmental Science, 2019, 39(11): 4804-4811] DOI: 10.19674/j.cnki.issn1000-6923.2019.0560
[19] 陈炜, 黄慧萍, 田亦陈, 等. 基于Google Earth Engine平台的三江源地区生态环境质量动态监测与分析[J]. 地球信息科学学报, 2019, 21(9): 1382-1391. [CHEN Wei, HUANG Huiping, TIAN Yichen, et al. Monitoring and assessment of the eco-environment quality in the Sanjiangyuanregion based on Google Earth Engine[J]. Journal of Geo-information Science, 2019, 21(9): 1382-1391] DOI: 10.12082/dqxxkx.2019.190095
[20] 张滔, 唐宏. 基于Google Earth Engine的京津冀2001—2015年植被覆盖变化与城镇扩张研究[J]. 遥感技术与应用, 2018, 33(4): 593-599. [ZHANG Tao, TANG Hong. Vegetation cover change and urban expansion in Beijing-Tianjin-Hebei during 2001—2015 based on Google Earth Engine[J]. Remote Sensing Technology and Application, 2018, 33(4): 593-599] DOI: 10.11873/j.issn.1004-0323.2018.4.0593
[21] 郝斌飞, 韩旭军, 马明国, 等. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4): 600-611. [HAO Binfei, HAN Xujun, MA Mingguo, et al. Research progress on the application of Google Earth Engine in geoscience and environmental sciences[J]. Remote Sensing Technology and Application, 2018, 33(4): 600-611] DOI: 10.11873/j.issn.1004-0323.2018.4.0600
[22] 魏静, 刘丽丽, 王红云, 等. 1990—2020年太行山区土地利用景观格局时空变化[J].中国生态农业学报(中英文), 2022, 30(7): 1123-1133. [WEI Jing, LIU Lili, WANG Hongyun, et al. Spatiotemporal patterns of land-use change in the Taihang Mountain(1990—2020)[J]. Chinese Journal of Eco-Agriculture, 2022, 30(7): 1123-1133] DOI: 10.12357/cjea.20210870
[23] 王成武, 罗俊杰, 唐鸿湖.基于InVEST模型的太行山沿线地区生态系统碳储量时空分异驱动力分析[J].生态环境学报, 2023, 32(2): 215-225.[WANG Chengwu, LUO Junjie, TANG Honghu. Analysis on the driving force of spatial and temporal differentiation of carbon storage in the Taihang Mountains based on InVEST model[J]. Ecology and Environmental Sciences, 2023, 32(2): 215-225] DOI: 10.16258/j.cnki.1674-5906.2023.02.001
[24] 梁红柱, 刘丽丽, 高会, 等.太行山东坡中段植物多样性垂直分布格局及其驱动因素[J].中国生态农业学报(中英文), 2022, 30(7): 1091-1100.[LIANG Hongzhu, LIU Lili, GAO Hui, et al. Altitudinal distribution pattern and its driving factors of plant diversity in the middle section of the eastern slope of the Taihang Mountain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(7): 1091-1100] DOI: 10.12357/cjea.20210863
[25] 司梦可, 曹建生, 阳辉, 等.太行山区不同植被条件下土壤水分动态变化特征研究[J].中国生态农业学报(中英文), 2020, 28(11): 1766-1777.[SI Mengke, CAO Jiansheng, YANG Hui, et al. Soil water variation of different vegetation community in Taihang Mountain area[J]. Chinese Journal of Eco-Agriculture, 2020, 28(11): 1766-1777] DOI: 10.13930/j.cnki.cjea.200172
[26] MALAKAR N K, HULLEY G C, HOOK S J, et al. An operational land surface temperature product for landsat thermal data: Methodology and validation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 5717-5735. DOI: 10.1109/TGRS.2018.2824828
[27] LIU Ying, MENG Qingyan, ZHANG Linlin, et al. NDBSI: A normalized difference bare soil index for remote sensing to improve bare soil mapping accuracy in urban and rural areas[J]. Catena, 2022, 214: 106265. DOI: 10.1016/j.catena.2022.106265
[28] GAO Wenlong, ZHANG Shengwei, RAO Xinyu, et al. Landsat TM/OLI-based ecological and environmental quality survey of Yellow River Basin, Inner Mongolia Section[J]. Remote Sensing, 2021, 13(21): 4477. DOI: 10.3390/rs13214477
[29] ZHANG Chaosheng, LUO Lin, XU Weilin, et al. Use of local Moran's I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland[J]. Science of the Total Environment, 2008, 398(1-3): 212-221. DOI: 10.1016/j.scitotenv.2008.03.011
[30] 黎江韵. 技术创新与区域经济发展时空格局演化分析——基于NPP/VIIRS夜间灯光数据[J]. 地域研究与开发, 2022, 41(3): 1-5. [LI Jiangyun. Analysis on evolution of technology innovation and regional economic development spatio-temporal pattern: Based on NPP/IIRS night light data[J]. Areal Research and Development, 2022, 41(3): 1-5] DOI: 10.3969/j.issn.1003-2363.2022.03.001
[31] ANSELIN L. Local indicators of spatial association-LISA[J]. Geographical Analysis, 1995, 27(2): 93-115.
[32] YANG Yujie, WANG Shijie, BAI Xiaoyong, et al. Factors affecting long-term trends in Global NDVI[J]. Forests, 2019, 10(5): 372. DOI: 10.3390/f10050372
[33] MUDELSEE M. Trend analysis of climate time series: A review of methods[J]. Earth-Science Reviews, 2019, 190: 310-322. DOI: 10.1016/j.earscirev.2018.12.005
[34] ZHOU Weiqi, PICKETT S T A, CADENASSO M L. Shifting concepts of urban spatial heterogeneity and their implications for sustainability[J]. Landscape Ecology, 2017, 32(1): 15-30. DOI: 10.1007/s10980-016-0432-4
[35] 王德利, 李玉倩, 寇婷, 等. 首都周边地区矿山地质环境治理与生态修复思路[J]. 城市地质, 2017, 12(4): 24-29. [WANG Deli, LI Yuqian, KOU Ting, et al. The mine geological environment management and ecological restoration in areas around the Beijing Capital[J]. Urban Geology, 2017, 12(4): 24-29] DOI: 10.3969/j.issn.1007-1903.2017.04.004
[36] 李龙飞. 基于GIS的大同矿区土地利用变化及可持续利用研究[D]. 太原: 山西大学, 2013: 31-34. [LI Longfei. The land use chang and sustainable utilization research of Da Tong mining area based on GIS[D]. Taiyuan: Shanxi University, 2013: 31-34]
[37] 蒋毓琪, 杨怡康, 朱少英. 黄河流域山西矿区自然资本占用动态评估及驱动机制[J]. 环境工程技术学报, 2022, 12(4): 1264-1271. [JIANG Yuqi, YANG Yikang, ZHU Shaoying. Dynamic evaluation and driving mechanism of natural capital occupation in Shanxi mining areas of the Yellow River Basin[J]. Journal of Environmental Engineering Technology, 2022, 12(4): 1264-1271] DOI: 10.12153/j.issn.1674-991X.20210327
[38] 贾志安. 山西省典型矿区植被覆盖度时空变化特征及驱动因素研究[D]. 太谷: 山西农业大学, 2018: 19-45. [JIA Zhian. Temporal and spatial characteristics and driving forces of vegetation coverage in typical mining areas in Shanxi province[D]. Taigu: Shanxi Agricultural University, 2018: 19-45]
[39] 郭慧, 董士伟, 辛学兵, 等. 多尺度遥感产品在太行山绿化工程中的适用性分析[J]. 农业工程学报, 2020, 36(11): 159-165.[GUO Hui, DONG Shiwei, XIN Xuebing, et al. Suitability analysis of multi-scale remote sensing products in Taihang Mountain afforestation project[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 159-165] DOI: 10.11975/j.issn.1002-6819.2020.11.018
[40] 胡耀升, 翟洪波, 田野. 太行山绿化工程建设可持续性分析[J]. 林业经济, 2017, 39(9): 48-52. [HU Yaosheng, ZHAI Hongbo, TIAN Ye. Analysis on sustainability of Taihang Mountain greening program construction[J]. Forestry Economics, 2017, 39(9): 48-52] DOI: 10.13843/j.cnki.lyjj.2017.09.009
[41] 李月丛, 许清海, 王泽民. 浅谈河北太行山区的生态恢复[J]. 中国水土保持, 2004(11): 14-15. [LI Yuecong, XU Qinghai, WANG Zemin. Ecological restoration in the Taihang Mountains of Hebei[J]. Soil and Water Conservation in China, 2004(11): 14-15] DOI: 10.14123/j.cnki.swcc.2004.11.005
[42] JUN Chen, BAN Yifang, LI Songnian. Open access to earth land-cover map[J]. Nature, 2014, 514(7523): 434-434. DOI: 10.1038/514434c
[43] 何雪莉, 李亚男, 石天宇, 等. 1961—2018年太行山东西侧降水变化[J]. 山地学报, 2022, 40(1): 43-55.[HE Xueli, LI Yanan, SHI Tianyu, et al. Precipitation changes to the eastern and western sides of the Taihang Mountains from 1961 to 2018[J]. Mountain Research, 2022, 40(1): 43-55] DOI: 10.16089/j.cnki.1008-2786.000654
[44] 范晨雨, 景海涛, 王莉, 等. 太行山区气候时空变化及其对植被覆盖度的影响[J]. 水土保持研究, 2020, 27(3): 146-152. [FAN Chenyu, JING Haitao, WANG Li, et al. Spatial-temporal change of climate and its relationship with vegetation coverage in Taihang mountainous areas[J]. Research of Soil and Water Conservation, 2020, 27(3): 146-152] DOI: 10.13869/j.cnki.rswc.2020.03.022
[45] 宋慧敏, 薛亮. 基于遥感生态指数模型的渭南市生态环境质量动态监测与分析[J]. 应用生态学报, 2016, 27(12): 3913-3919. [SONG Huimin, XUE Liang. Dynamic monitoring and analysis of ecological environment in Weinan city, northwest China based on RSEI model[J]. Chinese Journal of Applied Ecology, 2016, 27(12): 3913-3919] DOI: 10.13287/j.1001-9332.201612.024
[46] 刘智才, 徐涵秋, 李乐, 等. 基于遥感生态指数的杭州市城市生态变化[J]. 应用基础与工程科学学报, 2015, 23(4): 728-739.[LIU Zhicai, XU Hanqiu, LI Le, et al. Ecological change in the Hangzhou area using the remote sensing based ecological index[J]. Journal of Basic Science and Engineering, 2015, 23(4): 728-739] DOI: 10.16058/j.issn.1005-0930.2015.04.008
[47] 罗春, 刘辉, 戚陆越. 基于遥感指数的生态变化评估——以常宁市为例[J]. 国土资源遥感, 2014, 26(4): 145-150. [LUO Chun, LIU Hui, QI Luyue. Ecological changes assessment based on remote sensing indices: A case of Changning city[J]. Remote Sensing for Land and Resources, 2014, 26(4): 145-150] DOI: 10.6046/gtzyyg.2014.04.23
[48] 王渊, 赵宇豪, 吴健生. 基于Google Earth Engine云计算的城市群生态质量长时序动态监测——以粤港澳大湾区为例[J]. 生态学报, 2020, 40(23): 8461-8473. [WANG Yuan, ZHAO Yuhao, WU Jiansheng. Dynamic monitoringof long time series of ecological quality in urban agglomerations based on Google Earth Engine cloud computing: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area, China [J]. Acta Ecologica Sinica, 2020, 40(23): 8461-8473] DOI: 10.5846/stxb202006251650
[49] 赵少华, 刘思含, 刘芹芹, 等. 中国城镇生态环境遥感监测现状及发展趋势[J]. 生态环境学报, 2019, 28(6): 1261-1271. [ZHAO Shaohua, LIU Sihan, LIU Qinqin, et al. Progress of urban ecological environment monitoring by remote sensing in China[J]. Ecology and Environmental Sciences, 2019, 28(6): 1261-1271] DOI: 10.16258/j.cnki.1674-5906.2019.06.023
[50] 赵管乐, 彭培好. 基于RSEI的典例干热河谷区——四川省攀枝花市生态环境变化分析[J]. 山地学报, 2021, 39(6): 842-854.[ZHAO Guanle, PENG Peihao. RSEl-based evaluation on ecological environment changes in typical dry hot valley: Panzhihua city, Sichuan, China[J]. Mountain Research, 2021, 39(6): 842-854] DOI: 10.16089/j.cnki.1008-2786.000643

相似文献/References:

[1]王 建,赵牡丹*,李健波,等.基于MODIS时序数据的秦巴山区生态环境质量动态监测及驱动力分析[J].山地学报,2021,(6):830.[doi:10.16089/j.cnki.1008-2786.000642]
 WANG Jian,ZHAO Mudan*,LI Jianbo,et al.Dynamic Monitoring and Driving Forces of Eco-Environmental Quality in the Qinba Mountains Based on MODIS Time-Series Data[J].Mountain Research,2021,(3):830.[doi:10.16089/j.cnki.1008-2786.000642]

备注/Memo

备注/Memo:
收稿日期(Received date): 2022-12-15; 改回日期(Accepted date): 2023-06-02
基金项目(Foundation item): 河南省高等学校重点科研项目(23A170016)。[Key Scientific Research Project of Henan Higher Education Institutions(23A170016)]
更新日期/Last Update: 2023-05-30