[1]王桂林.城市化背景下中国PM2.5时空变化特征[J].山地学报,2024,(6):880-894.[doi:10.16089/j.cnki.1008-2786.000869]
 WANG Guilin.Spatiotemporal Evolution of PM2.5 Pollution in the Urbanizating Cities of China[J].Mountain Research,2024,(6):880-894.[doi:10.16089/j.cnki.1008-2786.000869]
点击复制

城市化背景下中国PM2.5时空变化特征
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第6期
页码:
880-894
栏目:
山区发展
出版日期:
2024-12-20

文章信息/Info

Title:
Spatiotemporal Evolution of PM2.5 Pollution in the Urbanizating Cities of China
文章编号:
1008-2786-(2024)6-880-15
作者:
王桂林
(上海城建职业学院 城市发展研究中心,上海200438)
Author(s):
WANG Guilin
(Urban Development Research Center, Shanghai Urban Construction Vocational College, Shanghai 200438, China)
关键词:
城市化 PM2.5污染 MODIS GTWR
Keywords:
urbanization PM2.5 pollution MODIS GTWR
分类号:
X8
DOI:
10.16089/j.cnki.1008-2786.000869
文献标志码:
A
摘要:
快速城市化进程中,人类活动是城市PM2.5污染的主要因素。分析城市化对PM2.5污染的影响,掌握PM2.5污染演变规律,对于控制PM2.5污染,提升城市治理水平具有现实意义。然而,以往城市PM2.5污染研究多依赖地面监测点PM2.5数据,且未能有效排除PM2.5中自然源(如扬尘、海盐等)对城市污染的独立影响,从而在一定程度上影响了研究结果的准确性和可靠性。本研究基于卫星遥感气溶胶垂直厚度、 GEOS-Chem模拟值以及地面监测值,通过运用时空地理加权回归模型GTWR,反演了1998—2017年中国PM2.5污染和人为排放PM2.5(排除扬尘、海盐影响)的时空分布,并分析二者的演化关系。结果表明:(1)基于GTWR的PM2.5模拟精度为87.94%,比GEOS-Chem模型模拟精度高7.80%。(2)中国PM2.5污染空间分布呈倒“T”形态,纵横交界处华北平原污染最为严重; 人为排放PM2.5呈“胡焕庸线”分布格局,虽整体上升但具有阶段性波动趋势。(3)中国人口城市化水平与人为排放PM2.5污染呈显著正相关(R=0.66)。低城市化(人口城市化率为0~40%)城市的PM2.5污染处于最低水平; 中城市化(40%~60%)的PM2.5平均质量浓度为(27.49±8.95)μg?m-3,是低城市化的5.92倍; 高城市化(60%~80%)的PM2.5质量浓度均值为(34.40±7.71)μg?m-3,比中城市化城市高出25.14%,是低城市化的7.41倍; 北京、上海、天津的人口城市化率最高,处于80%~100%,PM2.5平均质量浓度为(61.60±10.15)μg?m-3,比高城市化城市高出79.07%,是中城市化城市的2.24倍,是低城市化城市的13.28倍。本研究结果可为改善城市空气质量、制定科学合理的污染防治策略提供相关依据。
Abstract:
In the process of rapid urbanization, human activities are the primary contributors to urban PM2.5 pollution. Analyzing the impact of urbanization on PM2.5 pollution and mastering the evolution law of PM2.5 pollution are of practical significance for removing PM2.5 pollution and improving the level of urban governance. Previous studies on urban PM2.5 pollution depended on ground-based PM2.5 data collected at ground monitoring stations in cities, and the influence of natural sources of PM2.5(such as fugitive dust and sea salt)on urban pollution were not effectively excluded, thereby affecting the accuracy and reliability of the research results to a certain extent.
In this study, based on aerosol optical depth(AOD)from satellite remote sensing, Goddard Earth Observation System Chemical(GEOS-Chem)model simulations, and ground-based monitoring data, it employed a Geographically Time Weighted Regression(GTWR)model to retrieve the spatiotemporal distribution of PM2.5 pollution and anthropogenic PM2.5 emissions(excluding the influence of fugitive dust and sea salt)in China from 1998 to 2017 and analyzed the evolutionary relationship between the two.
(1)The simulation accuracy of urban PM2.5 based on GTWR was 87.94%, which was 7.80% higher than that the simulation accuracy of GEOS-Chem model.
(2)In China, the spatial pattern of PM2.5 pollution showed an inverted “T” shape, with the North China Plain at the intersection being the most polluted. Anthropogenic PM2.5 emissions followed the “Hu Huanyong line” distribution pattern, showing an overall increase and a periodic fluctuation trend.
(3)There was a significant positive correlation(R=0.66)between the urbanization level of China's population and anthropogenic PM2.5 pollution.
(4)Cities with low urbanization(population urbanization rate of 0-40% )had the lowest PM2.5 pollution levels. The average PM2.5 concentration in moderately urbanized cities was 27.49±8.95 μg·m-3 which was 5.92 times that of low-urbanized cities.
(5)The average PM2.5 concentration in highly urbanized cities was 34.40±7.71 μg·m-3, which was 25.14% higher than that of medium-urbanized cities, and 7.41 times higher than that of low-urbanized cities. Beijing, Shanghai and Tianjin has the highest population urbanization rate, ranging from 80% to 100%, with an average PM2.5 concentration of 61.60±10.15 μg·m-3, which was 79.07% higher than that in highly urbanized cities, 2.24 times higher than that of medium-urbanized cities, and 13.28 times higher than that of low-urbanized cities.
Conclusively, urbanization pattern in China had a significant impact on PM2.5 pollution. The higher the level of urbanization, the more severe anthropogenic PM2.5 pollution is. The findings of this study can provide a scientific basis for improving urban air quality and formulating scientific and reasonable pollution prevention strategies.

参考文献/References:

[1] 韩立建. 城市化与PM2.5时空格局演变及其影响因素的研究进展[J]. 地理科学进展, 2018, 37(8): 1011-1021. [HAN Lijian. Relationship between urbanization and urban air quality: An insight on fine particulate dynamics in China [J]. Progress in Geography, 2018, 37(8): 1011-1021] DOI: 10.18306/dlkxjz.2018.08.0 01
[2] LI Xingru, JIANG Lei, BAI Yu, et al. Wintertime aerosol chemistry in Beijing during haze period: Significant contribution from secondary formation and biomass burning emission [J]. Atmospheric Research, 2019, 218(4): 25-33. DOI: 10.1016/j.atmosres.2018.10.010
[3] 李名升, 任晓霞, 于洋, 等. 中国大陆城市PM2.5污染时空分布规律[J]. 中国环境科学, 2016, 36(3): 641-650. [LI Mingsheng, REN Xiaoxia, YU Yang, et al. Spatiotemporal pattern of ground-level fine particulate matter(PM2.5)pollution in mainland China [J]. China Environmental Science, 2016, 36(3): 641-650]
[4] 王晶, 赵龙, 吴辉, 等. 西南地区城市化进程加剧局地气象条件的空间差异[J]. 山地学报, 2022, 40(1): 120-135. [WANG Jing, ZHAO Long, WU Hui, et al. Urbanization magnifies spatial variations of local meteorological conditions in southwest China [J]. Mountain Research, 2022, 40(1): 120-135] DOI: 10.16089/j.cnki.1008-2786.000660
[5] KIM S Y, SHEPPARD L, BERGEN S, et al. Prediction of fine particulate matter chemical components with a spatio-temporal model for the multi-ethnic study of atherosclerosis cohort [J]. Journal of Exposure Science and Environmental Epidemiology, 2016, 26(5): 520-528. DOI: 10.1038/jes.2016.29
[6] LI Haiwei, WANG Dongfang, CUI Long, et al. Characteristics of atmospheric PM2.5 composition during the implementation of stringent pollution control measures in Shanghai for the 2016 G20 Summit [J]. Science of the Total Environment, 2019, 648: 1121-1129. DOI: 10.1016/j.scitotenv.2018.08.219
[7] BRAUER M, FREEDMAN G, FROSTAD J, et al. Ambient air pollution exposure estimation for the global burden of disease 2013 [J]. Environmental Science and Technology, 2016, 50(1): 79-88. DOI: 10.1021/acs.est.5b03709
[8] FOROUZANFAR M H, ALEXANDER L, ANDERSON H R. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: A systematic analysis for the global burden of disease study 2013 [J]. British Dental Journal, 2015, 219(7): 329-335. DOI: 10.1016/S0140-6736(15)00128-2
[9] 李泽新, 王蓉. 山地城市道路交通环境特点及其控制对策[J]. 山地学报, 2014, 32(1): 46-51. [LI Zexin, WANG Rong. The environment's characteristics and control's methods of transportation in road for mountain city [J]. Mountain Research, 2014, 32(1): 46-51] DOI: 10.16089/j.cnki.1008-2786.2014.01.018
[10] ATKNSON R W, ANALITIS A, SAMOLI E, et al. Short-term exposure to traffic-related air pollution and daily mortality in London, UK [J]. Journal of Exposure Science and Environmental Epidemiology, 2016, 26(2): 125-32. DOI: 10.1038/jes.2015.65
[11] BAI Yang, WU Lixin, QIN Kai, et al. A geographically and temporally weighted regression model for ground-level PM2.5 estimation from satellite-derived 500m resolution AOD [J]. Remote Sensing, 2016, 8(3): 262. DOI: 10.3390/rs8030262
[12] MING Lili, JIN Ling, LI Jun, et al. PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events [J]. Environmental Pollution, 2017, 223: 200-212. DOI: 10.1016/j.envpol.2017.01.013
[13] 贺晋瑜, 燕丽, 王彦超, 等. 我国PM2.5浓度分阶段改善目标情景分析[J]. 环境科学, 2019, 40(5): 2036-2042. [HE Jinyu, YAN Li, WANG Yanchao, et al. Scenario analysis of PM2.5 concentration targets and milestones in China [J]. Environmental Science, 2019, 40(5): 2036-2042] DOI: 10.13227/j.hjkx.201808241
[14] ZHU Wenhui, XU Xiangde, ZHENG Jun, et al. The characteristics of abnormal wintertime pollution events in the Jing-Jin-Ji region and its relationship with meteorological factors [J]. Science of the Total Environment, 2018, 626: 887-898. DOI: 10.1016/j.scitotenv.2018.01.083
[15] 许文龙, 胡方超, 王雨轩. 基于AERONET数据估算近地面PM2.5[J]. 环境科学学报, 2019, 39(6): 1902-1912. [XU Wenlong, HU Fangcao, WANG Yuxuan. Estimating the near-ground PM2.5 concentration based on AERONET data [J]. Acta Scientiae Circumstantiae, 2019, 39(6): 1902-1912] DOI: 10.13671/j.hjkxxb.2019.0098
[16] 闫戈丁, 景海涛, 何湜, 等. 太行山区生态环境质量时空变化与演变趋势[J]. 山地学报, 2023, 41(3): 335-347. [YAN Geding, JING Haitao, HE Shi, et al. Spatial-temporal variation and evolutionary trends of eco-environment quality in the Taihang Mountains, China [J]. Mountain Research, 2023, 41(3): 335-347]. DOI: 10.16089/j.cnki.1008-2786.000752
[17] 王桂林, 杨昆, 杨扬. 京津冀地区不透水表面扩张对PM2.5污染的影响研究[J]. 中国环境科学, 2017, 37(7): 2470-2481. [WANG Guilin, YANG Kun, YANG Yang. The spatio-temporal variation of PM2.5 pollution and the its correlation with the impervious surface expansion [J]. China Environmental Science, 2017, 37(7): 2470-2481] DOI: 10.13227/j.hjkx.201812157
[18] 王占山, 李云婷, 陈添, 等. 2013年北京市PM2.5的时空分布[J]. 地理学报, 2015, 70(1): 110-120. [WANG Zhanshan, LI Yunting, CHEN Tian, et al. Spatial-temporal characteristics of PM2.5 in Beijing in 2013 [J]. Acta Geographica Sinica, 2015, 70(1): 110-120] DOI: 10.11821/dlxb201501009
[19] HUANG Xinxin, JIAO Tifeng, LIU Qingqing, et al. Hierarchical electrospun nanofibers treated by solvent vapor annealing as air filtration mat for high-efficiency PM2.5 capture [J]. Science China Materials, 2019, 62(3): 423-436. DOI: 10.1007/s40843-018-9320-4
[20] TAO Jun, ZHANG Leiming, CAO Junji, et al. A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties, and their relationships across China [J]. Atmospheric Chemistry and Physics, 2017, 17(15): 9485-9518. DOI: 10.5194/acp-2017-271
[21] 段菁春, 李兴华, 谭吉华, 等. 北京冬季大气颗粒物数浓度的粒径分布特征及来源[J]. 环境科学研究, 2009, 22(10): 1134-1140. [DUAN Qingchun, LI Xinghua, TAN Jihua, et al. Size distribution and source apportionment of atmospheric particle number concentration in winter in Beijing [J]. Research of Environmental Sciences, 2009, 22(10): 1134-1140] DOI: 10.13198/j.res.2009.10.24.duanjch.016
[22] PHILIP S, MARTIN R V, VAN DONKELAAR A, et al. Global chemical composition of ambient fine particulate matter for exposure assessment [J]. Environmental Science & Technology, 2014, 48(22): 13060-13068. DOI: 10.1021/es502965b
[23] SHINDELL D T, LEE Y H, FALUVEGI G. Climate and health impacts of US emissions reductions consistent with 2 ℃ [J]. Nature Climate Change, 2016, 6(5): 503-507. DOI: 10.1038/nclimate2935
[24] VAN DONKELAAR A, MARTIN R V, BRAUER M, et al. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors [J]. Environmental Science & Technology, 2016, 50(7): 3762-3772. DOI: 10.1021/acs.est.5b05833
[25] VAN DONKELAAR A, MARTIN R V, LI Chi, et al. Regional estimates of chemical composition of fine particulate matter using a combined geoscience-statistical method with information from satellites, models, and monitors [J]. Environmental Science & Technology, 2019, 53: 2595-2611. DOI: 10.1021/acs.est.8b06392

相似文献/References:

[1]李宏波,何萍.云南高原城市发展对降雨的影响——以楚雄市为例[J].山地学报,2011,(05):575.
 LI Hongbo,HE Ping.Impact of Urban Development on the Rainfall in Yunnan Plateau ——A Case Study in Chuxiong City[J].Mountain Research,2011,(6):575.
[2]王 晶abc,赵 龙abc*,吴 辉,等.西南地区城市化进程加剧局地气象条件的空间差异[J].山地学报,2022,(1):120.[doi:10.16089/j.cnki.1008-2786.000660]
 WANG Jingabc,ZHAO Longabc*,WU Hui,et al.Urbanization Magnifies Spatial Variations of Local Meteorological Conditions in Southwest China[J].Mountain Research,2022,(6):120.[doi:10.16089/j.cnki.1008-2786.000660]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-12-23; 改回日期(Accepted date):2024-12-11
基金项目(Foundation item): 上海城建职业学院校级重点项目(cjky202541)。[ Key Project of Shanghai Urban Construction Vocational College(cjky202541)]
作者简介(Biography): 王桂林(1986-),女,江西上饶人,博士,副研究员,主要研究方向:大气污染。[WANG Guilin(1986-), female, born in Shangrao, Jiangxi Province, Ph.D., associate professor, specialized in air pollution] E-mail: kawgl@126.com
更新日期/Last Update: 2024-11-30