[1]刘元恭,张 彦*,谌小慧,等.新疆阿尔泰山多年冻土区泥炭剖面有机碳结构变化及其影响机理[J].山地学报,2024,(3):300-311.[doi:10-16089/j.cnki.1008-2786.000824]
 LIU Yuangong,ZHANG Yan*,CHEN Xiaohui,et al.Change of Organic Carbon Composition in Peat Profiles over the Permafrost Areas of Xinjiang Altai Mountains in China and Its Influence Mechanism[J].Mountain Research,2024,(3):300-311.[doi:10-16089/j.cnki.1008-2786.000824]
点击复制

新疆阿尔泰山多年冻土区泥炭剖面有机碳结构变化及其影响机理
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第3期
页码:
300-311
栏目:
山地环境
出版日期:
2024-05-25

文章信息/Info

Title:
Change of Organic Carbon Composition in Peat Profiles over the Permafrost Areas of Xinjiang Altai Mountains in China and Its Influence Mechanism
文章编号:
1008-2786-(2024)3-300-12
作者:
刘元恭张 彦*谌小慧陈昭一童宇毅
(福建师范大学 a.福建省亚热带资源与环境重点实验室; b.地理科学学院,福州 350007)
Author(s):
LIU Yuangong ZHANG Yan* CHEN Xiaohui CHEN Zhaoyi TONG Yuyi
(a. Key Laboratory for Subtropical Resources and Environment of Fujian Province; b. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China)
关键词:
多年冻土 泥炭 有机碳 稳定性 阿尔泰山
Keywords:
permafrost peat organic carbon stability the Altai Mountains
分类号:
K903
DOI:
10-16089/j.cnki.1008-2786.000824
文献标志码:
A
摘要:
多年冻土泥炭地是重要的陆地碳库之一,在区域碳循环及气候变化过程中扮演重要作用。前期研究集中于区域气候变化对泥炭有机碳稳定性影响研究,但局地环境变化对其影响并不明确。新疆阿尔泰山多年冻土泥炭地是中国西北高山泥炭重要的分布地区之一,对气候变化响应敏感。本文选取阿尔泰山三处多年冻土区泥炭地(黑湖、哈拉萨孜和三道海子)剖面,利用傅里叶变换红外光谱(FTIR)技术对比分析泥炭剖面易分解的碳水化合物和结构较稳定的芳香族化合物的含量变化特征,揭示不同局地环境条件下泥炭剖面中有机碳结构变化及差异特征; 并结合泥炭剖面中总有机碳(TOC)、腐殖化度(HD)和灰分等理化指标以及局地环境特征,探讨阿尔泰山多年冻土区泥炭沉积过程,揭示泥炭有机碳结构稳定性变化的影响机理。结果表明,(1)阿尔泰山不同环境条件下多年冻土区泥炭剖面中有机碳结构含量特征存在明显差异。黑湖和哈拉萨孜泥炭剖面中芳香族化合物含量(26.63%和26.58%)显著高于三道海子泥炭剖面中芳香族化合物含量(21.21%); 三道海子泥炭剖面中碳水化合物含量(36.12%)明显高于黑湖(21.84%)和哈拉萨孜(24.21%)泥炭剖面。(2)芳香族化合物与碳水化合物含量比值结果表明,黑湖泥炭剖面中有机碳结构稳定性(1.33)高于哈拉萨孜(1.14)和三道海子(0.60); 黑湖和哈拉萨孜泥炭剖面中有机碳稳定性随深度增加而增加,三道海子则随深度增加而下降。(3)阿尔泰山不同环境条件下的多年冻土泥炭地植被种群和微生物活性的差异,是导致泥炭有机碳稳定性变化的主要因素。本研究可为科学评估高山多年冻土区有机碳库动态变化及对环境变化的响应提供参考。
Abstract:
Permafrost peatland is one of the most important terrestrial carbon pools and plays a key role in regulating regional carbon cycle and local climate change. Most previous research concerned about the influence of regional climate change on the composition of peat organic carbon; however, little knowledge of the response of organic carbon stability to local environmental change was made.
Permafrost peatlands in Xinjiang Altai Mountains is sensitive to climate change, and is one of the most important distribution areas of alpine peat in northwestern China.
In this study, three peat profiles at Hehu, Halasazi and Sandaohaizi, separately located at three typical permafrost areas along Xinjiang Altai Mountains were selected for peatland survey. Fourier transform infrared spectroscopy(FTIR)technology was used to analyze the compositional changes of decomposable carbohydrate compounds as well as stable aromatic compounds in the peat profiles, for revealing the changes of organic carbon composition in the different local geo-environment circumstances. Physical and chemical indicators in the peat profile such as total organic carbon(TOC), humification degree(HD), ash content as well as local environmental conditions were jointly included in comprehensive analysis to describe the process of peat deposition and reveal the influence mechanism of the changes in peat organic carbon composition.
(1)There were distinct differences in the organic carbon compositions in the peat profiles at the three survey sites of permafrost along Xinjiang Altai Mountains. At Hehu and Halazi, in the peat profiles it had a content of 26.63% and 26.58% aromatic compounds, separately, which was higher than that of 21.21% at Sandaohaizi. And it had a content of 36.12% carbohydrates compounds in the peat profiles at Sandaohaizi, higher than that of 21.84% at Hehu and 24.21% at Halasazi.
(2)As for the ratio of aromatic compounds to carbohydrates compounds, the stability of organic carbon composition in the peat profile at Hehu was 1.33, higher than 1.14 at Halasazi and 0.60 at Sandaohaizi. The stability of organic carbon in the peat profiles at Hehu and Halasazi increased with depth, but at Sandaohaizi it decreased with depth.
(3)The differences in vegetation population and microbial activity in permafrost peatlands under different environmental conditions along Xinjiang Altai Mountains were the main factors leading to the change of the stability of organic carbon.
This study can provide references for scientific assessment of dynamic changes of organic carbon pool in alpine permafrost areas and its response to environmental changes.

参考文献/References:

[1] 柴岫. 中国泥炭的形成与分布规律的初步探讨[J]. 地理学报, 1981, 36(3): 237-253. [CHAI Xiu. The formation and types of peat in China and the law of governing its distribution [J]. Acta Georaphica Sinica, 1981, 36(3): 237-253] DOI: 10.11821/xb198103001
[2] 赵红艳, 冷雪天, 王升忠. 长白山地泥炭分布、沉积速率与全新世气候变化[J]. 山地学报, 2002, 20(5): 513-518. [ZHAO Hongyan, LENG Xuetian, WANG Shengzhong. Distribution, accumulation rate of peat in the Changbaishan Mountains and climate change in Holocene [J]. Mountain Research, 2002, 20(5): 513-518] DOI: 10.16089/j.cnki.108-2786.202.05.01
[3] CONG Jinxin, GAO Chuanyu, HAN Dongxue, et al. Stability of the permafrost peatlands carbon pool under climate change and wildfires during the last 150 years in the northern Great Khingan Mountains, China [J]. Science of the Total Environment, 2020, 712: 136476. DOI: 10.1016/j.scitotenv.2019.136476
[4] YU Zicheng, LOISEL J, BROSSEAU D P, et al. Global peatland dynamics since the Last Glacial Maximum [J]. Geophysical Research Letters, 2010, 37(13): L13402. DOI: 10.1029/2010gl043584
[5] ZHANG Yan, YANG Ping, GAO Chuanyu, et al. Peat properties and Holocene carbon and nitrogen accumulation rates in a peatland in the Xinjiang Altai Mountains, northwestern China [J]. Journal of Geophysical Research-Biogeosciences, 2020, 125(12): 14. DOI: 10.1029/2019jg005615
[6] GORHAM E. Northern peatlands: Role in the carbon cycle and probable responses to climatic warming [J]. Ecological Applications, 1991, 1(2): 182-195. DOI: 10.2307/1941811
[7] LEIFELD J, STEFFENS M, GALEGO-SALA A. Sensitivity of peatland carbon loss to organic matter quality [J]. Geophysical Research Letters, 2012, 39(14): L14704. DOI: 10.1029/2012gl051856
[8] XING Wei, BAO Kunshan, GALLEGO-SALA A V, et al. Climate controls on carbon accumulation in peatlands of northeast China [J]. Quaternary Science Reviews, 2015, 115: 78-88. DOI: 10.1016/j.quascirev.2015.03.005
[9] PORPORATO A, D’ODORICO P, LAIO F, et al. Hydrologic controls on soil carbon and nitrogen cycles. I. Modeling scheme [J]. Advances in Water Resources, 2003, 26(1): 45-58. DOI: 10.1016/s0309-1708(02)00094-5
[10] TURETSKY M R, WIEDER R K, VITT D H. Boreal peatland C fluxes under varying permafrost regimes [J]. Soil Biology and Biochemistry, 2002, 34(7): 907-912. DOI: 10.1016/s0038-0717(02)00022-6
[11] WANG Xianwei, SONG Changchun, WANG Jiaoyue, et al. Carbon release from Sphagnum peat during thawing in a montane area in China [J]. Atmospheric Environment, 2013, 75: 77-82. DOI: 10.1016/j.atmosenv.2013.04.056
[12] 张仲胜, 李敏, 宋晓林, 等. 气候变化对土壤有机碳库分子结构特征与稳定性影响研究进展[J]. 土壤学报, 2018, 55(2): 273-282. [ZHANG Zhongsheng, LI Min, SONG Xiaolin, et al. Effects of climate change on molecular structure and stability of soil carbon pool: A general review [J]. Acta Pedologica Sinica, 2018, 55(2): 273-282] DOI: 10.11766/trxb201707240324
[13] HODGKINS S B, RICHARDSON C J, DOMMAIN R, et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance [J]. Nature Communications, 2018, 9(1): 3640. DOI: 10.1038/s41467-018-06050-2
[14] 周正虎, 刘琳, 侯磊. 土壤有机碳的稳定和形成: 机制和模型[J]. 北京林业大学学报, 2022, 44(10): 11-22. [ZHOU Zhenghu, LIU Lin, HOU Lei. Soil organic carbon stabilization and formation: Mechanism and model [J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22] DOI: 10.12171/j.1000-1522.20220183
[15] ZHOU Zhenghu, WANG Chuankuan, LUO Yiqi. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality [J]. Nature Communications, 2020, 11(1): 3072. DOI: 10.1038/s41467-020-16881-7
[16] 新疆阿尔泰山林业局. 中国自然保护区新疆阿尔泰山两河源综合科学考察[M]. 乌鲁木齐: 新疆科学技术出版社, 2003: 152-170. [Xinjiang Altay Forest Bureau. Comprehensive scientific investigation of Altay Mountains Two-River Source Nature Reserve in China [M]. Urumqi: Xinjiang Science and Technology Press, 2003: 152-170]
[17] 张彦. 新疆阿尔泰山区全新世泥炭发育特征及区域环境演变[D]. 长春: 中国科学院东北地理与农业生态研究所, 2016: 17-23. [ZHANG Yan. Peat development characteristics and regional environment evolution during the Holocene in Altai Mountains, Xinjiang [D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2016: 17-23]
[18] 谌小慧, 张彦, 武政, 等. 阿尔泰山多年冻土区泥炭沼泽有机碳储量估算及其影响因素[J]. 湿地科学, 2023, 21(6): 876-886. [CHEN Xiaohui, ZHANG Yan, WU Zheng, et al. Estimation of organic carbon stocks and their influence factors in the permafrost peatlands of the Altai Mountains [J]. Wetland Science, 2023, 21(6): 876-886 ] DOI: 10.13248/j.cnki.wetlandsci.2023.06.008
[19] 童伯良, 李树德, 张廷军. 中国阿尔泰山的冻土[J]. 冰川冻土, 1986, 8(4): 357-364. [TONG Boliang, LI Shude, ZHANG Tingjun. Frozen ground in the Altay Mountains of China [J]. Journal of Glaciology and Geocryology, 1986, 8(4): 357-364] DOI: 10.7522/j.issn.1000-0240.1986.0050
[20] 张彦, 马学慧, 刘兴土, 等. 新疆阿尔泰山区全新世泥炭丘形态、发育过程与泥炭堆积速率初探[J]. 第四纪研究, 2018, 38(5): 1221-1232. [ZHANG Yan, MA Xuehui, LIU Xingtu, et al. Preliminary study on morphology, development process and peat accumulation rate of palsas during the Holocene in the Altai Mountains, northern Xinjiang Autonomous Region, northwest China [J]. Quaternary Sciences, 2018, 38(5): 1221-1232] DOI: 10.11928/j.isn.1001-7410.2018.05.16
[21] HODGKINS S B, TFAILY M M, MCCALLEY C K, et al. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(16): 5819-5824. DOI: 10.1073/pnas.1314641111
[22] CONG Jinxin, GAO Chuanyu, XING Wei, et al. Historical chemical stability of carbon pool in permafrost peatlands in northern Great Khingan Mountains(China)during the last millennium, and its paleoenvironmental implications [J]. Catena, 2022, 209: 105853. DOI: 10.1016/j.catena.2021.105853
[23] 潘大东, 凌超豪, 徐晓花, 等. 福建梅花山泥炭腐殖化度记录的过去千年气候变化[J]. 第四纪研究, 2023, 43(1): 95-109. [PAN Dadong, LING Chaohao, XU Xiaohua, et al. The climate change over the past 1000 years by humification records of a peat core from Meihua Mountain in Fujian province [J]. Quaternary Sciences, 2023, 43(1): 95-109] DOI: 10.11928/j.issn.1001-7410.2023.01.08
[24] GAO Chuanyu, HE Jiabao, ZHANG Yan, et al. Fire history and climate characteristics during the last millennium of the Great Hinggan Mountains at the monsoon margin in northeastern China [J]. Global and Planetary Change, 2018, 162: 313-320. DOI: 10.1016/j.gloplacha.2018.01.021
[25] 丛金鑫. 近百年环境变化对大兴安岭泥炭沼泽碳库稳定性影响研究[D]. 长春: 中国科学院东北地理与农业生态研究所, 2021: 10-12, 23-24. [CONG Jinxin. The impact of global change on peatlands carbon pool in northern Great Khingan Mountains in recent hundred years [D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2021: 10-12, 23-24] DOI: 10.27536/d.cnki.gccdy.2021.000017
[26] ZHANG Yan, MEYERS P A, LIU Xingtu, et al. Holocene climate changes in the central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China [J]. Quaternary Science Reviews, 2016, 152: 19-30. DOI: 10.1016/j.quascirev.2016.09.016
[27] 潘蕊蕊, 李小雁, 胡广荣, 等. 青海湖流域季节性冻土区坡面土壤有机碳分布特征及其影响因素[J]. 生态学报, 2020, 40(18): 6374-6384. [PAN Ruirui, LI Xiaoyan, HU Guangrong, et al. Characteristics of soil organic carbon distribution and its controlling factors on hillslope in seasonal frozen area of Qinghai Lake Basin [J]. Acta Ecologica Sinica, 2020, 40(18): 6374-6384] DOI: 10.5846/stxb201910172176
[28] BRODER T, BLODAU T, BIESTER H, et al. Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia [J]. Biogeosciences, 2012, 9(4): 1479-1491. DOI: 10.5194/bg-9-1479-2012, 2012
[29] LOU Yanjing, GAO Chuanyu, PAN Yanwen, et al. Niche modelling of marsh plants based on occurrence and abundance data [J]. Science of the Total Environment, 2018, 616-617: 198-207. DOI: 10.1016/j.scitotenv.2017.10.300
[30] 张勇, 胡海波, 黄玉洁, 等. 不同植被恢复模式对土壤有机碳分子结构及其稳定性的影响[J]. 环境科学研究, 2015, 28(12): 1870-1878. [ZHANG Yong, HU Haibo, HUANG Yujie, et al. Effects of different vegetation restoration models on molecular structure and stability of soil organic carbon [J]. Research of Environmental Sciences, 2015, 28(12): 1870-1878] DOI: 10.13198/j.issn.1001-6929.2015.12.08
[31] CONG Jinxin, GAO Chuanyu, ZHAO Haiyang, et al. Chemical stability of carbon pool in peatlands dominated by different plant types in Jilin province(China)and its potential influencing factors [J]. Frontiers in Ecology and Evolution, 2023, 11: 1171688. DOI: 10.3389/fevo.2023.1171688
[32] TURETSKY M R, KOTOWSKA A, BUBIER J, et al. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands [J]. Global Change Biology, 2014, 20(7): 2183-2197. DOI: 10.1111/gcb.12580
[33] WRIGHT E L, BLACK C R, CHEESMAN A W, et al. Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland [J]. Global Change Biology, 2011, 17(9): 2867-2881. DOI: 10.1111/j.1365-2486.2011.02448.x
[34] WANG Yiyun, WANG Hao, HE Jinsheng, et al. Iron-mediated soil carbon response to water-table decline in an alpine wetland [J]. Nature Communication, 2017, 8(1): 15972. DOI: 10.1038/ncomms15972
[35] RAO Zhiguo, SHI Fuxi, LI Yunxia. Long-term winter/summer warming trends during the Holocene revealed by α-cellulose δ18O/δ13C records from an alpine peat core from central Asia [J]. Quaternary Science Reviews, 2020, 232: 106217. DOI: 10.1016/j.quascirev.2020.106217
[36] DROLLINGER S, KNORR K H, KNIERZINGER W, et al. Peat decomposition proxies of Alpine bogs along a degradation gradient [J]. Geoderma, 2020, 369: 114331. DOI: 10.1016/j.geoderma.2020.114331
[37] CLARKSON B R, MOORE T R, FITZGERALD N B, et al. Water table regime regulates litter decomposition in restiad peatlands, New Zealand [J]. Ecosystems, 2014, 17(2): 317-326. DOI: 10.1007/s10021-013-9726-4
[38] LIU Hanxiang, GAO Chuanyu, WEI Chunfeng, et al. Evaluating the timing of the start of the Anthropocene from northeast China: Applications of stratigraphic indicators [J]. Ecological Indicators, 2018, 84: 738-747. DOI: 10.1016/j.ecolind.2017.09.040
[39] HELLER C, ELLERBROCK R H, ROBKOPF N, et al. Soil organic matter characterization of temperate peatland soil with FTIR-spectroscopy: Effects of mire type and drainage intensity [J]. European Journal of Soil Science, 2015, 66(5): 847-858. DOI: 10.1111/ejss.12279

相似文献/References:

[1]鲁嘉濠,牛富俊,程花,等.青藏高原工程走廊冻土分布模型及其变化趋势[J].山地学报,2013,(02):226.
 LU Jiahao,NIU Fujun,Cheng Hua,et al.The Permafrost Distribution Model and Its Change Trend of Qinghai-Tibet Engineering Corridor[J].Mountain Research,2013,(3):226.
[2]杨建平,丁永建,陈仁升,等.长江黄河源区多年冻土变化及其生态环境效应[J].山地学报,2004,(03):278.
[3]马东涛,张金山,王蒙,等.新藏公路新疆段多年冻土特征及其灾害初探[J].山地学报,2004,(05):554.

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 03- 01; 改回日期(Accepted date):2024- 05-21
基金项目(Foundation item): 国家自然科学基金(42177432); 福建省科技厅公益类项目(2021R1002002)。[National Natural Science Foundation of China(42177432); Public Welfare Project of Technology Department of Fujian Province(2021R1002002)]
作者简介(Biography): 刘元恭(1998-),男,河南信阳人,硕士研究生,主要研究方向:湿地生态与环境演变。[LIU Yuangong(1998-), male, born in Xinyang, Henan province, M.Sc. candidate, research on wetland ecology and environmental change] E-mail: lyg17051011167@outlook.com
*通讯作者(Corresponding author): 张彦(1988-),女,博士,副研究员,主要研究方向:生态演化过程。[ZHANG Yan(1988-), female, Ph.D., associate professor, research on the process of ecological evolution] E-mail: zhangyan7299@126.com
更新日期/Last Update: 2024-05-30