[1]何成邦,胡春生*,田景梅,等.大别山东南缘河流裂点成因及其地貌演化意义[J].山地学报,2023,(3):322-334.[doi:10.16089/j.cnki.1008-2786.000751 ]
 HE Chengbang,HU Chunsheng*,TIAN Jingmei,et al.Origin and Geomorphological Evolution of River Knickpoints in the Southeast Edge of the Dabie Mountains, China[J].Mountain Research,2023,(3):322-334.[doi:10.16089/j.cnki.1008-2786.000751 ]
点击复制

大别山东南缘河流裂点成因及其地貌演化意义
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第3期
页码:
322-334
栏目:
山地环境
出版日期:
2023-05-20

文章信息/Info

Title:
Origin and Geomorphological Evolution of River Knickpoints in the Southeast Edge of the Dabie Mountains, China
文章编号:
1008-2786-(2023)3-322-13
作者:
何成邦12 胡春生12* 田景梅12 赵婷婷12
(1.安徽师范大学 地理与旅游学院,安徽 芜湖 241002; 2. 江淮流域地表过程与区域响应安徽省重点实验室,安徽 芜湖 241002)
Author(s):
HE Chengbang12 HU Chunsheng12* TIAN Jingmei12 ZHAO Tingting12
(1. School of Geography and Tourism, Anhui Normal University, Wuhu 241002, Anhui, China; 2. Anhui Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, Wuhu 241002, Anhui, China)
关键词:
河流裂点 成因 构造运动 大别山
Keywords:
river knickpoint genesis tectonic movement the Dabie Mountains
分类号:
P333
DOI:
10.16089/j.cnki.1008-2786.000751
文献标志码:
A
摘要:
河流裂点形态特征蕴含了区域河流演化的历史信息,是认识区域地貌演化、构造运动、气候变化及人类活动潜在相互作用机制的切入点。以往裂点成因研究多选择在河流演化控制因素比较典型的地区,成因分析方法也相对单一。本文以河流演化环境复杂的大别山东南缘为研究区,基于标准陡峭指数、面积高程积分、坡度-面积双对数法和降水侵蚀力等探讨区域河流裂点形成原因。研究表明:(1)研究区5条河流干流纵剖面均处于不均衡状态,发育68个裂点。(2)研究区裂点发育受到构造活动、岩性、降水等多种因素影响。构造运动特别是郯庐断裂带等的断层活动是区域裂点发育的主导因素,共形成45个裂点,超过裂点总数量的65%。(3)研究区地貌演化受到构造运动影响,区域断层活动显著,并且构造运动活跃性存在差异,山地区域构造运动活跃性高于山前盆地,西南区域构造运动活跃性高于东北区域。本研究可为复杂区域河流演化研究提供借鉴,并从新的视角进一步了解大别山地区地貌演化过程。
Abstract:
The morphological features of river knickpoints embody the geo-history of regional river evolution, which are clues to interpret the potential interaction mechanism of regional geomorphic evolution, tectonic movement, climate change and human activities. Past investigations into the genesis of knickpoints were mostly conducted in some typical areas with recognized controlling factors of river evolution, and the approaches to genetic analysis were relatively single.

参考文献/References:

[1] SCHOENBOHM L M, WHIPPLE K X, BURCHFIEL B C, et al. Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan province, China [J]. Geological Society of America Bulletin, 2004, 116(7-8): 895-909. DOI: 10.1130/B25364.1
[2] NEELY A B, BOOKHAGEN B, BURBANK D W. An automated knickzone selection algorithm(KZ-Picker)to analyze transient landscapes: Calibration and validation [J]. Journal of Geophysical Research: Earth Surface, 2017, 122(6): 1236-1261. DOI: 10.1002/2017JF004250
[3] SHI Xiaohui, YANG Zhao, DONG Yunpeng, et al. Longitudinal profile of the upper Weihe River: Evidence for the late Cenozoic uplift of the northeastern Tibetan Plateau [J]. Geological Journal, 2018, 53(S1): 364-378. DOI: 10.1002/gj.3195
[4] CYR A J, GRANGER D E, OLIVETTI V, et al. Distinguishing between tectonic and lithologic controls on bedrock channel longitudinal profiles using cosmogenic 10Be erosion rates and channel steepness index [J]. Geomorphology, 2014, 209(15): 27-38. DOI: 10.1016/j.geomorph.2013.12.010
[5] CROSBY B T, WHIPPLE K X. Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand [J]. Geomorphology, 2006, 82(1-2): 16-38. DOI: 10.1016/j.geomorph.2005. 08.023
[6] 李正晨, 王先彦, 于洋, 等. 岩性和侵蚀基准面对构造活跃区河流地貌演化的影响——以青藏高原东北缘老虎山和哈思山地区为例[J]. 中国科学: 地球科学, 2021, 51(6): 994-1008. [LI Zhengchen, WANG Xianyan, YU Yang, et al. The impacts of base level and lithology on fluvial geomorphic evolution at the tectonically active Laohu and Hasi Mountains, northeastern Tibetan Plateau [J]. Science China Earth Sciences, 2021, 51(6): 994-1008] DOI: 10. 1360/N072020-0162
[7] BABAEI S, DEHBOZORGI M, HOSSEINIASL A, et al. New insights into the effect of the quaternary fault activity on river knickpoints in the Central Alborz(Iran)[J]. Quaternary International, 2020, 562(10): 104-120. DOI: 10.1016/j.quaint.2020.09.025
[8] ALVES F C, ROSSETTI D D F, VALERIANO M D M. Detecting neotectonics in the lowlands of Amazonia through the analysis of river long profiles [J]. Journal of South American Earth Sciences, 2020, 100: 102553. DOI: 10.1016/j.jsames.2020.102553
[9] 刘维明, 周丽琴, 陈晓清, 等. 雅砻江流域河道高程剖面上的堰塞坝印记[J]. 地学前缘, 2021, 28(2): 58-70. [LIU Weiming, ZHOU Liqin, CHEN Xiaoqing, et al. Influence of natural dams on the river profile of the Yalong River Basin [J]. Earth Science Frontiers, 2021, 28(2): 58-70] DOI: 10.13745/j.esf.sf.2020.9.1
[10] 李志威, 袁昕亚, 余国安. 雅鲁藏布江流域河流纵剖面特征及其地貌学意义[J]. 泥沙研究, 2020, 45(3): 67-73. [LI Zhiwei, YUAN Xinya, YU Guoan. Characteristics and geomorphologic significance of channel longitudinal profile in the Yarlung Tsangpo River Basin [J]. Journal of Sediment Research, 2020, 45(3): 67-73] DOI: 10.16239/j.cnki.0468-155x.2020.03.010
[11] CHAUVEAU D, AUTHEMAYOU C, MOLLIEX S, et al. Eustatic knickpoint dynamics in an uplifting sequence of coral reef terraces, Sumba Island, Indonesia [J]. Geomorphology, 2021, 393(15): 107936. DOI: 10.1016/J.GEOMORPH.2021.107936
[12] 刘譞, 林舟, 丁超. 岷江上游流域裂点分布及成因分析[J]. 高校地质学报, 2020, 26(3): 339-349. [LIU Xuan, LIN Zhou, DING Chao. Distribution and causes of knickpoints in the upper reaches of Minjiang River [J]. Geological Journal of China Universities, 2020, 26(3): 339-349] DOI: 10.16108/j.issn1006-7493.2019036
[13] 陈苗, 胡小飞, 王维. 走廊南山河流纵剖面高海拔裂点的成因[J]. 地理学报,2018, 73(9): 1702-1713. [CHEN Miao, HU Xiaofei, WANG Wei. The cause of high-altitude knickpoints on river longitudinal profiles along the Zoulang Nan Shan [J]. Acta Geographica Sinica, 2018, 73(9): 1702-1713] DOI: 10.11821/dlxb201809007
[14] HACKER B R, RATSCHBACHER L, WEBB L, et al. What brought them up? Exhumation of the Dabie Shan ultrahigh-pressure rocks [J]. Geology, 1995, 23(8): 743-746. DOI: 10.1130/00917613(1995)023<0743: WBTUEO>2.3.CO; 2
[15] 李三忠, 张国伟, 董树文, 等. 大别山高压—超高压岩石折返与扬子北缘构造变形的关系[J]. 岩石学报, 2010, 26(12): 3549-3562. [LI Sanzhong, ZHANG Guowei, DONG Shuwen, et al. Relation between exhumation of HP-UHP metamorphic rocks and deformation in the northern margin of the Yangtze Block [J]. Acta Petrologica Sinica, 2010, 26(12): 3549-3562]
[16] 李宝芳, 马文璞, 张惠良, 等. 大别山北麓石炭纪盆地沉积和构造研究[J]. 地学前缘, 2000, 7(3): 153-167. [LI Baofang, MA Wenpu, ZHANG Huiliang, et al. A study on sedimentology and tectonics of the carboniferous basin in the northern foot hills of the Dabie Mountains, China [J]. Earth Science Frontiers, 2000, 7(3): 153-167] DOI: 10.3321/j.issn:1005-2321.2000.03.016
[17] 刘贻灿, 徐树桐, 李曙光, 等. 大别山北部榴辉岩的大地构造属性及冷却史[J]. 地球科学, 2003, 28(1): 11-16. [LIU Yican, XU Shutong, LI Shuguang, et al. Tectonic setting and cooling history of eclogites from northern Dabie Mountains [J]. Earth Science, 2003, 28(1): 11-16] DOI: 10.3321/j.issn:1000-2383.2003.01.003
[18] 闫诚, 高锐, 郭晓玉. 深地震反射剖面所揭示的大陆碰撞后期的构造演化——以大别山造山带研究为例[J]. 地球物理学进展, 2020, 35(5): 1702-1709. [YAN Cheng, GAO Rui, GUO Xiaoyu. Post-collisional tectonic evolution revealed by deep seismic reflection profiles: A case study in the Dabie orogenic belt [J]. Progress in Geophysics, 2020, 35(5): 1702-1709] DOI: 10.6038/pg2020DD0362
[19] 黎哲君, 义崇政, 周冬瑞, 等. 大别山造山带东段重力异常多尺度分界及其构造意义[J]. 地震地质, 2021, 43(1): 158-176. [LI Zhejun, YI Chongzheng, ZHOU Dongrui, et al. Multi-scale decomposition of gravity anomaly of the eastern Dabie orogen and its tectonic implications [J]. Seismology and Geology, 2021, 43(1): 158-176] DOI: 10.3969/j.issn. 0253-4967.2021.01.010
[20] 赵明松, 李德成, 程先富, 等. 皖西大别山区土壤侵蚀空间分布特征及与地形的关系[J]. 安徽师范大学学报(自然科学版), 2017, 40(3): 265-270. [ZHAO Mingsong, LI Decheng, CHENG Xianfu, et al. Spatial characteristics of soil erosion and its relationship to topography in Dabie Mountains of west Anhui [J]. Journal of Anhui Normal University(Natural Science), 2017, 40(3): 265-270] DOI: 10.14182/J.cnki.1001-2443.2017.03.013
[21] 江来利, 胡召齐. 大别山东段的变质地层格架[J]. 安徽地质, 2014, 24(1): 1-6. [JIANG Laili, HU Zhaoqi. Metamorphic stratigraphic framework in the eastern part of the Dabie Mountain [J]. Geology of Anhui, 2014, 24(1): 1-6] DOI: 10.3969/j.issn.1005-6157.2014.01.001
[22] HACKER B R, RATSCHBACHER L, WEBB L, et al. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China [J]. Earth and Planetary Science Letters, 1998, 161(1-4): 215-230. DOI: 10. 1016/S0012-821X(98)00152-6
[23] 安徽省地质调查院. 1:50万安徽省地质构造图[CM/OL].(2018-11-29)[2022-07-15] http://www.ags.org.cn/download.php. [Geological Survey of Anhui Province. 1:500,000 Geologic structure map of Anhui province [CM/OL].(2018-11-29)[2022-07-15]http://www.ags.org.cn/download.php]
[24] FLINT J J. Stream gradient as a function of order, magnitude, and discharge [J]. Water Resources Research, 1974, 10(5): 969-973. DOI: 10.1029/WR010i005p00969
[25] HOWARD A D. A detachment-limited model of drainage basin evolution [J]. Water Resources Research, 1994, 30(7): 2261-2285. DOI: 10.1029/94WR00757
[26] MUDD S M, CLUBB F J, GAILLETON B, et al. How concave are river channels? [J] Earth Surface Dynamics, 2018, 6(2): 505-523. DOI: 10.5194/esurf-6-505-2018
[27] SNYDER N P, WHIPPLE K X, TUCKER G E, et al. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California [J]. Geological Society of America Bulletin, 2000, 112(8): 1250-1263. DOI: 10.1130/0016-7606(2000)112&lt; 1250:LRTTFD&gt; 2.0.CO; 2
[28] GALLEN S F, WEGMANN K W. River profile response to normal fault growth and linkage: An example from the Hellenic forearc of south-central Crete, Greece [J]. Earth Surface Dynamics, 2017, 5(1): 161-186. DOI: 10.5194/esurf-2016-52
[29] TRAUERSTEIN M, NORTON K P, PREUSSER F, et al. Climatic imprint on landscape morphology in the western escarpment of the Andes [J]. Geomorphology, 2013, 194: 76-83. DOI: 10.5194/esurf-5-161-2017
[30] PIKE R J, WILSON S E. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis [J]. Geological Society of America Bulletin, 1971, 82(4): 1079-1083. DOI: 10.1130/0016-7606(1971)82[1079:ERHIAG]2. 0.CO; 2
[31] STRAHLER A N. Hypsometric(area-altitude)analysis of erosional topography [J]. Geological Society of America Bulletin, 1952, 63(11): 1117-1142. DOI: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO; 2
[32] DELCAILLAU B, DEFFONTAINES B, FLOISSAC L, et al. Morphotectonic evidence from lateral propagation of an active frontal fold; Pakuashan anticline, foothills of Taiwan [J]. Geomorphology, 1998, 24(4): 263-290. DOI: 10. 1016/s0169-555x(98)00020-8
[33] 祝士杰, 汤国安, 李发源, 等. 基于DEM的黄土高原面积高程积分研究[J]. 地理学报, 2013, 68(7): 921-932. [ZHU Shijie, TANG Guo'an, LI Fayuan, et al. Spatial variation of hypsometric integral in the Loess Plateau based on DEM [J]. Acta Geographica Sinica, 2013, 68(7): 921-932]
[34] WANG Yizhou, ZHANG Huiping, ZHENG Dewen, et al. Coupling slope-area analysis, integral approach and statistic tests to steady state bedrock river profile analysis [J]. Earth Surface Dynamics, 2017, 5(1): 145-160. DOI: 10.5194/esurf-2016-40
[35] 吴素业. 安徽大别山区降雨侵蚀力简化算法与时空分布规律[J]. 中国水土保持, 1994, 4(4): 12-13. [WU Suye. Simplified algorithm and spatial and temporal distribution of precipitation erosivity in the Dabie Mountains, Anhui [J]. Soil and Water Conservation in China, 1994, 4(4): 12-13] DOI: 10.14123/j.cnki.swcc.1994.04.004
[36] SCHWANGHART W, GROOM G, KUHN N J, et al. Flow network derivation from a high resolution DEM in a low relief, agrarian landscape [J]. Earth Surface Processes and Landforms, 2013, 38(13): 1576-1586. DOI: 10.1002/esp.3452
[37] SCHWANGHART W, SCHERLER D. Bumps in river profiles: Uncertainty assessment and smoothing using quantile regression techniques [J]. Earth Surface Dynamics, 2017, 5(4):821-839. DOI: 10.5194/esurf-5-821-2017
[38] SCHWANGHART W, SCHERLER D. Short communication: TopoToolbox 2-MATLAB-based software for topographic analysis and modeling in earth surface sciences [J]. Earth Surface Dynamics, 2014, 2(1): 1-7. DOI: 10.5194/esurf-2-1-2014
[39] 戴岩, 王先彦, 王胜利, 等. 地貌形态指数反映的青藏高原东北部宛川河流域新构造活动[J]. 地理学报, 2016, 71(3): 412-421. [DAI Yan, WANG Xianyan, WANG Shengli, et al. The neotectonic activity of Wanchuan catchment reflected by geomorphic indices [J]. Acta Geographica Sinica, 2016, 71(3): 412-421] DOI: 10.11821/dlxb201603005
[40] 黄伟亮, 杨虔灏, 彭建兵, 等. 基于河流裂点序列研究秦岭北缘断裂强震活动历史[J]. 第四纪研究, 2022, 42(3): 844-857. [HUANG Weiliang, YANG Qianhao, PENG Jianbing, et al. Evaluating knickpoint retreat along the Qinling north piedmont fault for paleoseismological analysis during Holocene [J]. Quaternary Sciences, 2022, 42(3): 844-857] DOI: 10.11928 /j.issn.1001-7410.2022.03.17
[41] 杨源源, 赵朋, 汪小厉, 等. 大别山东麓河流变形研究与郯庐断裂带活动性分析[J]. 华北地震科学, 2018, 36(4): 16-24. [YANG Yuanyuan, ZHAO Peng, WANG Xiaoli, et al. River deformation in the east foot of the Dabie Mountains and activity analysis of Tan-Lu fault zone [J]. North China Earthquake Sciences, 2018, 36(4): 16-24] DOI: 10.3969/j. issn.1003-1375.2018.04.003
[42] 朱光, 王勇生, 牛漫兰, 等. 郯庐断裂带的同造山运动[J]. 地学前缘, 2004, 11(3): 171-181. [ZHU Guang, WANG Yongsheng, NIU Manlan, et al. Synorogenic movement of the Tan-Lu fault zone [J]. Earth Science Frontiers, 2004, 11(3): 171-181] DOI: 10.3321/j.issn:1005-2321.2004.03. 018
[43] LIU Yican, LI Shuguang. Detachment within subducted continental crust and multi-slice successive exhumation of ultrahigh-pressure metamorphic rocks: Evidence from the Dabie-Sulu orogenic belt [J]. Chinese Science Bulletin, 2008, 53(20): 3105-3119. DOI: 10.1007/s11434-008-0387-1
[44] KORUP O, MONTGOMERY D R, HEWITT K. Glacier and landslide feedbacks to topographic relief in the Himalayan syntaxes [J]. Proceedings of the National Academy of Sciences, 2010, 107(12): 5317-5322. DOI: 10. 1073/pnas.0907531107
[45] 曹志磊, 周琼, 鲍玉静, 等. 郯庐断裂带中南段断层形变累积率长期变化特征[J]. 国际地震动态, 2018, 480(12): 22-28. [CAO Zhilei, ZHOU Qiong, BAO Yujing, et al. Long-term variation of fault deformation rate in the central-south segment of the Tanlu fracture zone [J]. Recent Developments in World Seismology, 2018, 480(12): 22-28] DOI: 10.3969/j.issn.0253-4975.2018.12.005
[46] 葛计划, 曹志磊, 孙军, 等. 郯庐断裂带中南段跨断层短水准形变特征初步分析[J]. 地震科学进展, 2022, 52(11): 513-523+535. [GE Jihua, CAO Zhilei, SUN Jun, et al. Preliminary analysis on the characteristics of short leveling deformation across faults in the central and southern part of Tan-Lu fault zone [J]. Progress in Earthquake Sciences,2022, 52(11): 513-523+535] DOI: 10.19987/j.dzkxjz.2022-078
[47] WHIPPLE K X. Bedrock rivers and the geomorphology of active orogens [J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1): 151-185. DOI: 10.1146/annurev.earth.32.101802.120356
[48] 肖平, 景才瑞. 大别山天堂水库四周第四纪冰川遗迹探讨[J]. 华中师范大学学报(自然科学版), 1993, 27(1): 99-104. [XIAO Ping, JING Cairui. Research into the remnants of quaternary glacial round Tiantang reservoir, Dabie Mountain [J]. Journal of Central China Normal University, 1993, 27(1): 99-104] DOI: 10.19603/j.cnki.1000-1190.1993.01.025
[49] 刘格升, 王传尚, 胡斌. 大别山地区存在第四纪冰川吗?[J]. 华南地质与矿产, 2013, 29(1): 66-71. [LIU Gesheng, WANG Chuanshang, HU Bin. Does the Quaternary glacier ever exist in the Dabieshan area? [J]. Geology and Mineral Resources of South China, 2013, 29(1): 66-71] DOI: 10.3969/j.issn.1007-3701.2013.01.010
[50] 施雅风. 中国东部中低山地有无发育第四纪冰川的可能性?[J]. 地质论评, 2011, 57(1): 44-49. [SHI Yafeng. Is it possible to develop Quaternary glaciers in the middle and low mountains of eastern China? [J]. Geological Review, 2011, 57(1): 44-49] DOI: 10.16509/j.georeview.2011.01.011
[51] 杨翔, 程先富. 安徽省大别山区土壤侵蚀及其经济损失评估[J]. 土壤保持通报, 2013, 33(6): 136-140. [YANG Xiang, CHENG Xianfu. Soil erosion and its economic loss assessment in Dabie Mountain area in Anhui province [J]. Bulletin of Soil and Water Conservation, 2013, 33(6): 136-140] DOI: 10.13961/j.cnki.stbctb.2013.06.040
[52] BOOKHAGEN B, BURBANK D W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge [J]. Journal of Geophysical Research, 2010, 115: F03019. DOI: 10.1029/2009JF001426
[53] BONNET S, CRAVE A. Landscape response to climate change: Insights from experimental modeling and implications for tectonics versus climatic uplift of topography [J]. Geology, 2003, 31(2): 123-126. DOI: 10.1130/0091-7613(2003)031<0123: LRTCCI>2.0.CO; 2
[54] 张康, 王兆印, 刘怀湘, 等. 裂点发育及其对堰塞坝的稳定性影响[J]. 山地学报, 2011, 29(4): 474-482. [ZHANG Kang, WANG Zhaoyin, LIU Huaixiang, et al. Effect of knickpoint development in controlling the stability of the landslide dam [J]. Mountain Research, 2011, 29(4): 474-482] DOI: 10.16089/j.cnki.1008-2786.2011.04.008
[55] SONAM, SAHOO R, SINGH R N. Temporal profiling of uplift rate along an active fault using river long profile in the Kuchchh region, western India [J]. Quaternary International, 2021, 585: 85-98. DOI: 10.1016/j.quaint.2020.11.022

备注/Memo

备注/Memo:
收稿日期(Received date): 2022-07-14; 改回日期(Accepted date): 2023-05-08
基金项目(Foundation item): 安徽省自然科学基金面上项目(2108085MD127)。[Provincial General Program of Natural Science Foundation of Anhui Province(2108085MD127)]
更新日期/Last Update: 2023-05-30