参考文献/References:
[1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. [HUANG Runqiu. Large-scale landslides and their sliding mechanism in China since the 20th century [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454]
[2] 石菊松, 张永双, 董诚, 等. 基于GIS技术的巴东新城区滑坡灾害危险性区划[J]. 地球学报, 2005, 26(3): 275-282. [SHI Jusong, ZHANG Yongshuang, DONG Cheng, et al. GIS-based landslide hazard zonation of the new Badong county site [J]. Acta Geoscientica Sinica, 2005, 26(3): 275-282] DOI: 10.3321/j.issn:1006-3021.2005.03.014
[3] 张俊, 殷坤龙, 王佳佳, 等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报, 2016, 35(2): 284-296. [ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284-296] DOI: 10.13722/J. CNKI. JRME. 2015.0318
[4] JIANG Weiguo, RAO Pingzeng, CAO Ran, et al. Comparative evaluation of geological disaster susceptibility using multi-regression methods and spatial accuracy validation [J]. Journal of Geographical Sciences, 2017, 27(4): 439-462. DOI: 10.1007/s11442-017-1386-4
[5] PATRICHE C V, PIRNAU R, GROZAVU A, et al. A comparative analysis of binary logistic regression and analytical hierarchy process for landslide susceptibility assessment in the Dobrovat River Basin, Romania [J]. Pedosphere, 2016, 26(3): 335-350. DOI: 10.1016/S1002-0160(15)60047-9
[6] 余淙蔚, 柳侃, 殷杰, 等. 一种适用于逻辑回归模型评价浅层滑坡易发性的网格尺度划分方法——以2019年福建省三明市群发浅层滑坡为例[J]. 山地学报, 2022, 40(1): 106-119. [YU Congwei, LUI Kan, YIN Jie, et al. A grid-scale division method applicable to logistc regrsion models for evaluating the susceptibility of shallow landslides—taking the 2019 cluster of shallow landslides in Sanming, Fujian as example [J]. Mountain Research, 2022, 40(1): 106-119] DOI: 10.16089/j.cnki.1008-2786.000659
[7] LIU R, LI L, PIRASTEH S, et al. The performance quality of LR, SVM, and RF for earthquake-induced landslides susceptibility mapping incorporating remote sensing imagery [J]. Arabian Journal of Geosciences, 2021, 14(4): 259. DOI: 10.1007/s12517-021-06573-x
[8] 刘永垚, 第宝锋, 詹宇, 等. 基于随机森林模型的泥石流易发性评价——以汶川地震重灾区为例[J]. 山地学报, 2018, 36(5): 765-773. [LIU Yongyao, DI Baofeng, ZHAN Yu, et al. Debris flows susceptibility assessment in Wenchuan earthquake areas based on random forest algorithm model [J]. Mountain Research, 2018, 36(5): 765-773] DOI: 10.16089/j.cnki.1008-2786.000372
[9] XU Chong, DAI Fuchu, XU Xiwei, et al. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China [J]. Geomorphology, 2012, 145-146: 70-80. DOI: 10.1016/j.geomorph.2011.12.040
[10] YU Chenglong, CHEN Jianping. Landslide susceptibility mapping using the slope unit for southeastern Helong city, Jilin province, China: A comparison of ANN and SVM [J]. Symmetry, 2020, 12(6): 1047. DOI: 10.3390/sym12061047
[11] 郭子正, 殷坤龙, 付圣, 等. 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学, 2019, 44(12): 4299-4312. [GUO Zizheng, YIN Kunlong, FU Sheng, et al. Evaluation of landslide susceptibility based on GIS and WOE-BP model [J]. Earth Sciences, 2019, 44(12): 4299-4312] DOI: 10.3799/dqkx.2018.555
[12] XU Jin, ZHAO Yanna. Stability analysis of geotechnical landslide based on GA-BP neural network model [J]. Computational and Mathematical Methods in Medicine, 2022, 2022: 3958985. DOI: 10.1155/2022/3958985
[13] 张钟远, 邓明国, 徐世光, 等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报, 2022, 41(1): 157-171. [ZHANG Zhongyuan, DENG Mingguo, XU Shiguang, et al. Comparison of landslide susceptibility assessment models in Zhenkang county, Yunnan province, China [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 157-171] DOI: 10.13722/j. cnki. jrme. 2021.0360
[14] 吴常润, 角媛梅, 王金亮, 等. 基于频率比—逻辑回归耦合模型的双柏县滑坡易发性评价[J]. 自然灾害学报, 2021, 30(4): 213-224. [WU Changrun, JIAO Yuanmei, WANG Jinliang, et al. Frequency ratio and logistic regression models based coupling analysis for susceptibility of landslide in Shuangbai county [J]. Journal of Natural Disasters, 2021, 30(4): 213-224] DOI: 10.13577/j. jnd. 2021.0423
[15] 邓念东, 崔阳阳, 郭有金. 基于频率比—随机森林模型的滑坡易发性评价[J]. 科学技术与工程, 2020, 20(34): 13990-13996. [DENG Niandong, CUI Yangyang, GUO Youjin. Frequency ratio-random forest-model-based landslide susceptibility assessment [J]. Science Technology and Engineering, 2020, 20(34): 13990-13996]
[16] 周晓亭, 黄发明, 吴伟成, 等. 基于耦合信息量法选择负样本的区域滑坡易发性预测[J]. 工程科学与技术, 2022, 54(3): 25-35. [ZHOU Xiaoting, HUANG Faming, WU Weicheng, et al. Regional landslide susceptibility prediction based on negative sample selected by coupling information value method [J]. Advanced Engineering Sciences, 2022, 54(3): 25-35] DOI: 10.15961/j. jsuese. 202100808
[17] HUANG Faming, CAO Zhongshan, JIANG Shuihua, et al. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model [J]. Landslides, 2020, 17(12): 2919-2930. DOI: 10.1007/s10346-020-01473-9
[18] BUI D T, PRADHAN B, REVHAUG I, et al. A comparative assessment between the application of fuzzy unordered rules induction algorithm and J48 decision tree models in spatial prediction of shallow landslides at Lang Son city, Vietnam [G]// SRIVASTAVA P K, GUPTA S M M, ISLAM T. Remote Sensing Applications in Environmental Research. New York: Springer, 2014: 87-111. DOI: 10.1007/978-3-319-05906-8-6
[19] PRADHAN B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS [J]. Computers and Geosciences, 2013, 51: 350-365. DOI: 10.1016/j.cageo.2012.08.023
[20] JEBUR M N, PRADHAN B, TEHRANY M S. Optimization of landslide conditioning factors using very high-resolution airborne laser scanning(LiDAR)data at catchment scale [J]. Remote Sensing of Environment, 2014, 152: 150-165. DOI: 10.1016/j.rse.2014.05.013
[21] POURGHASEMI H R, PRADHAN B, GOKCEOGLU C. Application of fuzzy logic and analytical hierarchy process(AHP)to landslide susceptibility mapping at Haraz watershed, Iran [J]. Natural Hazards, 2012, 63: 965-996. DOI: 10.1007/s11069-012-0217-2
[22] PHAM B T, BUI D T, PRAKASH I, et al. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area(India)using GIS [J]. Catena, 2017, 149: 52-63. DOI: 10.1016/j.catena.2016.09.007
[23] ZHU Li, HUANG Lianghao, FAN Linyu, et al. Landslide susceptibility prediction modeling based on remote sensing and a novel deep learning algorithm of a cascade-parallel recurrent neural network [J]. Sensors, 2020, 20(6): 1576. DOI: 10.3390/s20061576
[24] MILOEVIC' D, MANCˇEV D, CˇERBA D, et al. The potential of chironomid larvae-based metrics in the bioassessment of non-wadeable rivers [J]. Science of the Total Environment, 2017, 616-617: 472-479. DOI: 10.1016/j.scitotenv.2017.10.262
[25] 杨光, 徐佩华, 曹琛, 等. 基于确定性系数组合模型的区域滑坡敏感性评价[J]. 工程地质学报, 2019, 27(5): 1153-1163. [YANG Guang, XU Peihua, CAO Chen, et al. Assessment of regional landslide susceptibility based on combined model of certainty factor method [J]. Journal of Engineering Geology, 2019, 27(5): 1153-1163] DOI: 10.13544/J. CNKI. Jeg. 2019018
[26] 松桃苗族自治县人民政府. 铜仁市松桃苗族自治县县情简介[EB/OL].(2021-11.01)[2022-07-31]. http://www.songtao.gov.cn/zjst/stjj/202008/t20200807_62284287.html [Songtao Miao Autonomous County People's Government. County Profile of Tongren Songtao Miao Autonomous County [EB/OL].(2021-11.01)[2022-07-31]. http://www.songtao.gov.cn/zjst/stjj/202008/t20200807_62284287.html]
[27] SUN Xiaohui, CHEN Jianping, HAN Xudong, et al. Landslide susceptibility mapping along the upper Jinsha River, south-western China: A comparison of hydrological and curvature watershed methods for slope unit classification [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(9): 4657-4670. DOI: 10.1007/s10064-020-01849-0
[28] REHMAN A, SONG J, HAQ F, et al. Multi-hazard susceptibility assessment using the analytical hierarchy process and frequency ratio techniques in the northwest Himalayas, Pakistan [J]. Remote Sensing, 2022, 14(3): 554. DOI: 10.3390/rs14030554
[29] 仉义星, 兰恒星, 李郎平, 等. 综合统计模型和物理模型的地质灾害精细评估——以福建省龙山社区为例[J]. 工程地质学报, 2019, 27(3): 608-622. [ZHANG Yixing, LAN Hengxing, LI Langping, et al. Combining statistical model and physical model for refined assessment of geological disaster: A case study of Longshan community in Fujian province [J]. Journal of Engineering Geology, 2019, 27(3): 608-622] DOI: 10.13544/j. cnki. jeg. 2018-270
[30] 罗鸿东, 李瑞冬, 张勃, 等. 基于信息量法的地质灾害气象风险预警模型:以甘肃省陇南地区为例[J]. 地学前缘, 2019, 26(6): 289-297. [LUO Hongdong, LI Ruidong, ZHANG Bo, et al. An early warning model system for predicting eteorological risk associated with geological disasters in the Longnan area,Gansu province based on the information value method [J]. Earth Science Frontiers, 2019, 26(6): 289-297] DOI: 10.13745/j. esf. sf.2019.11.1
[31] 张向营, 张春山, 孟华君, 等. 基于GIS和信息量模型的京张高铁滑坡易发性评价[J]. 地质力学学报, 2018, 24(1): 96-105. [ZHANG Xiangying, ZHNAG Chunshan, MENG Huajun, et al. Landslide susceptibility assessment of new Jing-Zhang high-speed railway based on GIS and information value model [J]. Journal of Geomechanics, 2018, 24(1): 96-105] DOI: 10.12090/j.issn.1006-6616.2018.24.01.011
[32] SAITO H, NAKAYAMA D, MATSUYAMA H. Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: The Akaishi Mountains, Japan [J]. Geomorphology, 2009, 109(3): 108-121. DOI: 10.1016/j.geomorph.2009.02.026
[33] 骆剑承, 周成虎, 杨艳. 人工神经网络遥感影像分类模型及其与知识集成方法研究[J]. 遥感学报, 2001, 5(2): 122-129. [LUO Jiancheng, ZHOU Chenghu, YANG Yan. ANN remote sensing classification model and its integration approach with Geo-knowledge [J]. Journal of Remote Sensing, 2001, 5(2): 122-129] DOI: 10.3321/j.issn:1007-4619.2001.02.010
[34] LOMBARDO L, TANYAS H. Chrono-validation of near-real-time landslide susceptibility models via plug-in statistical simulations [J]. Engineering Geology, 2020, 278: 105818. DOI: 10.1016/j.enggeo.2020.105818
[35] 刘艺梁, 殷坤龙, 刘斌. 逻辑回归和人工神经网络模型在滑坡灾害空间预测中的应用[J]. 水文地质工程地质, 2010, 37(5): 92-96. [LIU Yiliang, YIN Kunlong, LIU Bin. Application of logistic regression and artificial neural network model in spatial assessment of landslide hazards [J]. Hydrogeology and Engineering Geology, 2010, 37(5): 92-96] DOI: 10.16030/j. cnki. issn.1000-3665.2010.05.015
[36] DORMANN C F, ELITH J, BACHER S, et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance [J]. Ecography, 2013, 36(1): 27-46. DOI: 10.1111/j.1600-0587.2012.07348.x
[37] BUI D T, TUAN T A, KLENPE H, et al. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree [J]. Landslides, 2016, 13(2): 361-378. DOI: 10.1007/s10346-015-0557-6
[38] DE MELLO R B, MARCON R. Unpacking firm effects: Modeling political alliances in variance decomposition of firm performance in turbulent environments [J]. 2005, 2(1): 21-37. DOI: 10.1590/S1807-76922005000100003
[39] LIAO D, VALLIANT R. Variance inflation factors in the analysis of complex survey data [J]. Survey Methodology, 2012, 38(1): 53-62.
[40] CHEN Wei, ZHANG Shuai, LI Renwei, et al. Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and na?ve Bayes tree for landslide susceptibility modeling [J]. Science of the Total Environment, 2018, 644: 1006-1018. DOI: 10.1016/i.scitotenv.2018.06.389
[41] BUI D T, LOFMAN O, REVHAUG I, et al. Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression [J]. Natural Hazards, 2011, 59: 1413-1444. DOI: 10.1007/s11069-011-9844-2
[42] HAIR J F. Multivariate data analysis: An overview [M]. Heidelberg: Springer, 2011: 904-907. DOI: 10.1007/978-3-642-04898-2_395
[43] 胡涛. 贵州省思南县地质灾害危险性评价研究[D]. 武汉: 中国地质大学, 2020: 46-47, 55-46. [HU Tao. Study of geological disasters hazard assessment in Sinan county of Guizhou province [D]. Wuhan: China University of Geosciences, 2020: 46-47, 55-46 ] DOI: 10.27492/d. cnki. gzdzu 2020.000065
[44] VAN WESTEN C J, CASTELLANOS E, KURIAKOSE S L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview [J]. Engineering Geology, 2008, 102(3): 112-131. DOI: 10.1016/j.enggeo.2008.03.010
[45] 周超, 殷坤龙, 曹颖, 等. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价[J]. 地球科学, 2020, 45(6): 1865-1876. [ZHOU Chao, YIN Kunlong, CAO Ying, et al. Landslide susceptibility assessment by applying the coupling method of radial basis neural network and adaboost: A case study from the Three Gorges Reservoir area [J]. Earth Sciences, 2020, 45(6): 1865-1876] DOI: 10.3799/dqkx.2020.071
[46] CHUNG C J, FABBRI A G. Predicting landslides for risk analysis - spatial models tested by a cross-validation technique [J]. Geomorphology, 2008, 94(3-4): 438-452. DOI: 10.1016/j.geomorph.2006.12.036