参考文献/References:
[1] 王鸿兴, 孙大庆. 挡土墙后土体滑裂面及土压力变分法初探[J]. 岩土工程学报, 1989, 11(3): 86-93. [WANG Hongxing, SUN Daqing. Preliminary study on soil slip fracture surface and earth pressure variational method after retaining wall [J]. Chinese Journal of Geotechnical Engineering, 1989, 11(3): 86-93]
[2] 党发宁, 张乐, 王旭, 等. 基于弹性理论的有限位移条件下挡土墙上土压力解析[J]. 岩石力学与工程学报, 2020, 39(10): 2094-2103. [DANG Faning, ZHANG Le, WANG Xu, et al. Analysis of earth pressure on retaining walls with limited displacement based on elastic theory [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2094-2103] DOI: 10.13722/j.cnki.jrme.2020.0106
[3] 牟太平, 孙伟, 邱志雄, 等. 基于有限元—近场动力学耦合方法的挡土墙变形破损分析[J]. 中山大学学报(自然科学版)(中英文), 2022, 61(6): 158-165. [MOU Taiping, SUN Wei, QIU Zhixiong, et al. Damage analysis of the retaining wall based on the FEM-Peridynamics coupling method [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2022, 61(6): 158-165] DOI: 10.13471/j.cnki.acta.snus.2021B101
[4] 周健, 彭述权, 樊玲. 刚性挡土墙主动土压力颗粒流模拟[J]. 岩土力学, 2008, 29(3): 629-632+638. [ZHOU Jian, PENG Shuquan, FAN Ling. Particle flow simulation of active earth pressure distribution on rigid retaining wall [J]. Rock and Soil Mechanics, 2008, 29(3): 629-632+638] DOI: 10.16285/j.rsm.2008.03.040
[5] BENMEBAREK S, KHELIFA T, BENMEBAREK N, et al. Numerical evaluation of 3D passive earth pressure coefficients for retaining wall subjected to translation [J]. Computers and Geotechnics, 2008, 35(1): 47-60. DOI: 10.1016/j.compgeo.2007.01.008
[6] NADUKURU S S, MICHALOWSKI R L. Arching in distribution of active load on retaining walls [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(5): 575-584. DOI: 10.1061/(ASCE)GT.1943-5606.0000617
[7] 杨山奇, 卢坤林, 史克宝, 等. 刚性挡土墙后三维被动滑裂面的模型试验[J]. 岩土力学, 2018, 39(9): 3303-3312. [YANG Shanqi, LU Kunlin, SHI Kebao, et al. Model tests on 3D slip surface of passive failure behind a rigid retaining wall [J]. Rock and Soil Mechanics, 2018, 39(9): 3303-3312] DOI: 10.16285/j.rsm.2016.2603
[8] 顾慰慈, 武全社, 陈卫平. 挡土墙墙背填土中滑裂体形状的试验研究[J]. 岩土工程学报, 1988, 10(2): 49-56. [GU Weici, WU Quanshe, CHEN Weiping. Experimental study on the shape of slip fracture in the back fill of retaining wall [J]. Chinese Journal of Geotechnical Engineering, 1988, 10(2): 49-56]
[9] 彭翀, 袁会娜, 张丙印. 无网格自动加密方法及其在土体裂缝分析中的应用[J]. 工程力学, 2013, 30(6): 231-235+253. [PENG Chong, YUAN Huina, ZHANG Bingyin. Automatic node refinement for meshfree method and its application in soil crack analysis [J]. Engineering Mechanics, 2013, 30(6): 231-235+253] DOI: 10.6052/j.issn.1000-4750.2012.03.0145
[10] 张琰. 高土石坝张拉裂缝开展机理研究与数值模拟[D]. 北京: 清华大学, 2009: 140-159. [ZHANG Yan. Mechanism study and numerical simulation of tensile crack propagation in high earth and rockfill dam [D]. Beijing: Tsinghua University, 2009: 140-159]
[11] MAIR H U. Review: Hydrocodes for structural response to underwater explosions [J]. Shock and Vibration, 1999, 6(2): 81-96.
[12] BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear finite elements for continua and structures [M]. New York: John Wiley and Sons, 2000: 341-350.
[13] GOODIN C, PRIDDY J D. Comparison of SPH simulations and cone index tests for cohesive soils [J]. Journal of Terramechanics, 2016, 66: 49-57. DOI: 10.1016/j.jterra.2015.09.002
[14] LIANG Dongfang, HE Xuzhen. A comparison of conventional and shear-rate dependent Mohr-Coulomb models for simulating landslides [J]. Journal of Mountain Science, 2014, 11(6): 1478-1490. DOI: 10.1007/s11629-014-3041-1
[15] BUI H H, SAKO K, FUKAGAWA R. Numerical simulation of soil-water interaction using smoothed particle hydrodynamics(SPH)method [J]. Journal of Terramechanics, 2007, 44(5): 339-346. DOI: 10.1016/j.jterra.2007.10.003
[16] ZHANG Zhongya, JIN Xiaoguang, BI Jing. Development of an SPH-based method to simulate the progressive failure of cohesive soil slope [J]. Environmental Earth Sciences, 2019, 78: 537. DOI: 10.1007/s12665-019-8507-6
[17] WANG Haibin, FEI Yan, ZHANG Liwei, et al. Mechanism and flow process of debris avalanche in mining waste dump based on improved SPH simulation [J]. Engineering Failure Analysis, 2022, 138: 106345. DOI: 10.1016/j.engfailanal.2022.106345
[18] NETO A H F, ASKARINEJAD A, SPRINGMAN S M, et al. Simulation of debris flow on an instrumented test slope using an updated lagrangian continuum particle method [J]. Acta Geotechnica, 2020, 15(5): 2757-2777. DOI: 10.1007/s11440-020-00957-1
[19] DAI Zili, HUANG Yu, CHENG Hualin, et al. 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake [J]. Engineering Geology, 2014, 180: 21-33. DOI: 10.1016/j.enggeo.2014.03.018
[20] 胡嫚, 谢谟文, 王立伟. 基于弹塑性土体本构模型的滑坡运动过程SPH模拟[J]. 岩土工程学报, 2016, 38(1): 58-67. [HU Man, XIE Mowen, WANG Liwei. SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 58-67] DOI: 10.11779/CJGE201601005
[21] HUANG Yu, ZHANG Weijie, XU Qiang, et al. Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics [J]. Landslides, 2012,9(2): 275-283. DOI: 10.1007/s10346-011-0285-5
[22] 陈诚, 詹发民, 周方毅, 等. 基于SPH-FEM算法的钢板接触爆破数值模拟研究[J]. 计算机仿真, 2022, 39(8): 6-9. [CHEN Cheng, ZHAN Famin, ZHOU Fangyi, et al. Study on numerical simulation of steel plate contact blasting based on SPH-FEM algorithm [J]. Computer Simulation, 2022, 39(8): 6-9]
[23] 马上, 王振清, 陈叶青, 等. 基于FEM-SPH方法的水下爆炸重力坝数值模型构建[J]. 防护工程, 2022,44(2): 22-29. [MA Shang, WANG Zhenqing, CHEN Yeqing, et al. Construction of underwater explosion gravity dam numerical model based on FEM-SPH method [J]. Protective Engineering, 2022, 44(2): 22-29]
[24] 王翔宇, 李志雨, 孙树政, 等. 基于SPH-FEM方法的舷侧与冰山碰撞结构响应[J]. 船舶工程, 2023,45(1): 56-62. [WANG Xiangyu, LI Zhiyu, SUN Shuzheng, et al. Structural response of shipboard iceberg collision based on SPH-FEM method [J]. Ship Engineering, 2023, 45(1): 56-62] DOI: 10.13788/j.cnki.cbgc.2023.01.09
[25] LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomical Journal, 1977, 82(12): 1013-1024.
[26] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: Theory and application to non-spherical stars [J]. Mon. Not. R. Astron. Soc., 1977, 181: 375-389.
[27] LIU G R, LIU M B. 光滑粒子流体动力学——一种无网格粒子法[M]. 韩旭, 杨刚, 强洪夫, 译. 长沙: 湖南大学出版社, 2005: 37-45. [LIU G R, LIU M B. Smoothed particle hydrodynamics: A meshless particle method [M]. HAN Xu, YANG Gang, QIANG Hongfu, translated.Changsha: Hunan University Press, 2005: 37-45]
[28] MONAGHAN J J, LATTANZIO J C. A refined particle method for astrophysical problems [J]. Astronomy and Astrophysics, 1985, 149: 135-143.
[29] MONAGHAN J J. Simulating free surface flows with SPH [J]. Journal of Computational Physics, 1994, 110(2): 399-406.
[30] LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain lagrangian hydrodynamics: A three-dimensional SPH code for dynamic material response [J]. Journal of Computational Physics, 1993, 109(1): 67-75.
[31] MORRIS J P, FOX P J, ZHU Y. Modeling low reynolds number incompressible flows using SPH [J]. Journal of Computational Physics, 1997, 136(1): 214-226.
[32]张志春, 强洪夫, 高巍然. SPH-FEM接触算法在冲击动力学数值计算中的应用[J]. 固体力学学报, 2011, 32(3): 319-324. [ZHANG Zhichun, QIANG Hongfu, GAO Weiran. Application of SPH-FEM contact algorithm in impact dynamics simulation [J]. Chinese Journal of Solid Mechanics, 2011, 32(3): 319-324] DOI: 10.19636/j.cnki.cjsm42-1250/o3.2011.03.014
[33] VIGNJEVIC R, DE VUYST T, CAMPBELL J C. A frictionless contact algorithm for meshless methods [J]. Computer Modeling in Engineering and Sciences, 2006, 13(1): 35-47.
[34] 费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2010: 219-220. [FEI Kang, ZHANG Jianwei. Application of ABAQUS in geotechnical engineering [M]. Beijing: China Water Resources and Hydropower Press, 2010: 219-220]
[35] STYLES T D, COGGAN J S, PINE R J. Back analysis of the Joss Bay Chalk Cliff Failure using numerical modelling [J]. Engineering Geology, 2011, 120: 81-90. DOI: 10.1016/j.enggeo.2011.04.004
[36] BOUISSOU S, DARNAULT R, CHEMENDA A, et al. Evolution of gravity-driven rock slope failure and associated fracturing: Geological analysis and numerical modelling [J]. Tectonophysics, 2012(526-529): 157-166. DOI: 10.1016/j.tecto.2011.12.010
[37] SCHOLTES L, DONZE F V. Modelling progressive failure in fractured rock masses using a 3D discrete element method [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52: 18-30. DOI: 10.1016/j.ijrmms.2012.02.009