[1]巢 林ab,等.喀斯特山区不同土地利用方式对土壤微生物生物量、酶活性及其化学计量的影响[J].山地学报,2023,(1):28-40.[doi:10.16089/j.cnki.1008-2786.000728]
 CHAO Lina,b,,et al.Effects of Different Land Use Patterns on Soil MicrobialBiomass, Enzyme Activity and Stoichiometry in the Mountainous Karst Areas of China[J].Mountain Research,2023,(1):28-40.[doi:10.16089/j.cnki.1008-2786.000728]
点击复制

喀斯特山区不同土地利用方式对土壤微生物生物量、酶活性及其化学计量的影响
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第1期
页码:
28-40
栏目:
山地环境
出版日期:
2023-01-25

文章信息/Info

Title:
Effects of Different Land Use Patterns on Soil MicrobialBiomass, Enzyme Activity and Stoichiometry in the Mountainous Karst Areas of China
文章编号:
1008-2786-(2023)1-28-13
作者:
巢 林1a1b 2 3 曾 鑫1c 欧梦菲1c 黄忻婷1c张建兵1a 1b 刘艳艳1a 1b*
(1. 南宁师范大学 a. 北部湾环境演变与资源利用教育部重点实验室; b.广西地表过程与智能模拟重点实验室; c.地理科学与规划学院, 南宁 530001; 2. 中国科学院华南植物园 中国科学院退化生态系统植被恢复与管理重点实验室,广州 510650; 3. 湖南会同森林生态系统国家野外科学观测研究站,湖南 会同 4183072)
Author(s):
CHAO Lin1a 1b 2 3 ZENG Xin1c OU Mengfei1c HUANG Xinting1c ZHANG Jianbing1a 1b LIU Yanyan1a 1b*
(1. a. Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education; b. Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation; c. School of Geography and Planning, Nanning Normal University, Nanning 530001, China; 2. Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 3. Hunan Huitong National Research Station of Forest Ecosystem, Huitong 418307, Hunan, China)
关键词:
土地利用 土壤性质 土壤养分 微生物熵 冗余分析 中国喀斯特山区
Keywords:
land use change soil properties soil nutrients microbial quotient redundancy analysis the mountainous karst areas of China
分类号:
Q148
DOI:
10.16089/j.cnki.1008-2786.000728
文献标志码:
A
摘要:
土地利用改变土壤理化性质,显著影响土壤微生物属性。在中国喀斯特地区,针对不同土地利用方式下土壤酶活性及其化学计量特征与土壤环境因子之间的关系,仍缺乏精确的定量认知,无法科学指导土地利用结构的优化与生态系统功能的维持。本文选取中国广西弄岗自然保护区4种土地利用方式(农田、草地、灌木林和森林)地块,采用土壤生物化学、酶学等方法,探讨不同土地利用方式对喀斯特土壤基本理化性质、微生物生物量、微生物熵、酶活性和酶化学计量的影响。结果表明:(1)土地利用方式显著影响土壤基础理化性质,土壤pH、有机碳(SOC)和全氮(N)含量表现为灌木林和森林显著高于农田和草地,而农田和草地土壤有效磷(AP)含量则显著高于森林和灌木林;(2)土壤微生物碳(MBC)和微生物氮(MBN)表现为灌木林>农田>森林>草地,且灌木林MBC和MBN显著高于其他土地利用方式,微生物磷(MBP)在农田土壤中最高; 冗余分析(RDA)表明有效氮(AN)和pH是驱动土壤微生物生物量变化的主要环境因子;(3)微生物熵碳(qMBC)和微生物熵氮(qMBN)均表现为农田>灌木林>草地>森林,且农田土壤qMBC 和qMBN显著高于森林,而不同土地利用方式土壤微生物熵磷(qMBP)无显著差异;(4)不同土地利用方式显著影响N-乙酰氨基葡萄糖苷酶(NAG)、 β-葡萄糖苷酶(BG)和酚氧化酶(PHO)活性,土壤酶活性变化受土壤C:N、SOC、pH和P含量调控;(5)不同土地利用方式对土壤酶化学计量碳氮比(eC:N)、碳磷比(eC:P)、氮磷比(eN:P)和微生物资源限制程度具有显著影响,磷是喀斯特地区土壤微生物最为受限的元素,由农田、草地到灌木林,微生物碳限制逐步增加,森林土壤碳限制程度最低。喀斯特地区不同土地利用方式引起土壤理化性质的改变是土壤微生物生物量、酶活性和酶化学计量变化的主要驱动力。研究结果可为喀斯特地区土地利用的科学规划提供参考,对预测喀斯特地区土壤微生物属性如何响应全球变化背景下土地利用与覆被变化具有重要作用。
Abstract:
Land use changes soil physical and chemical properties and significantly affects soil microbial properties. In the mountainous karst areas of China, there was still a lack of scientific recognition on the correlation between soil enzyme activity and its stoichiometric characteristics and soil environmental factors under different land use patterns, making it hard to scientifically guide the optimization of land use structure and the maintenance of ecosystem function.In this paper, four land use patterns(farmland, grassland, shrubland and forestland)in the Nonggang National Nature Reserve of Guangxi of China were investigated by means of soil biochemistry and enzymology. It examined the effects of the four land use patterns on basic physical and chemical properties, microbial biomass, microbial quotient, enzyme activity and enzyme stoichiometry in karst soils.Following results were obtained:(1)Land use patterns had strong influences on the soil physicochemical properties. The Soil pH, SOC and N contents in the shrubland and forestland were higher than those from the cropland and grassland; however, the concentrations of soil phosphorus available in the cropland and grassland were higher than those from the shrubland and forestland.(2)The soil microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)contents were in a descending order of shrubland > cropland > forestland > grassland; The shrubland had higher MBC and MBN as compared with ones in all other land use patterns; microbial biomass phosphorus(MBP)was found the highest in the cropland. The redundancy analysis(RDA)suggested that the content of soil available nitrogen and pH value were the main environmental factors driving soil microbial biomass.(3)The ratio of MBC to SOC(qMBC)and MBN to N(qMBN)both were in a descending order of cropland > shrubland > grassland > forestland, with qMBC and qMBN in the cropland being higher than those from other land use types, but there was no significant difference in the ratio of MBP to P(qMBP)in different land use patterns.(4)The land use patterns had great impact on N-acetylglucosaminidase(NAG), β-glucosidase(BG)and phenol oxidase(PHO)activities; soil C:N, SOC, pH and P concentration were the main factors driving the changes of soil enzyme activities.(5)Soil enzyme stoichiometry C/N ratio(eC:N), C/P ratio(eC:P), N/P ratio(eN:P)and microbial resource limitation were largely affected by the land use patterns. P was the most restricting elements for soil microorganisms in karst areas; soil microbial carbon restriction was the highest in the shrubland and grassland but the lowest in the forestland. Therefore, changes in soil physical-chemical properties induced by varied land use patterns were the main driving force of soil microbial biomass, enzyme activities and enzyme stoichiometry. The results provide references for scientific planning of land use in mountainous karst area, and thus plays a positive role in predicting how soil microbial attributes will respond to land use and land cover change in the context of global change.

参考文献/References:

[1] 沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 2015, 35(20): 6584-6591. [SHEN Renfang, ZHAO Xueqiang. Role of soil microbes in the acquisition of nutrients by plants [J]. Acta Ecological Sinica, 2015, 35(20): 6584-6591] DOI: 10.5846 /stxb201506051140
[2] CHENG Xiaoyu, YUN Yuan, WANG Hongmei, et al. Contrasting bacterial communities and their assembly processes in karst soils under different land use [J]. Science of the Total Environment, 2021, 751: 142263. DOI: 10.1016/j.scitotenv.2020.142263
[3] COLEMAN D C, CALLAHAM M A, CROSSLEY D A. Fundamentals of soil ecology [M]. San Diego: Academic Press, 2018.
[4] 张雅茜, 方晰, 冼应男, 等.亚热带区 4 种林地土壤微生物生物量碳氮磷及酶活性特征[J]. 生态学报, 2019, 39(14): 5326-5338. [ZHANG Yaqian,FANG Xi,XIAN Yingnan,et al.Characteristics of soil microbial biomass carbon, nitrogen,phosphorus and enzyme activity in four subtropical forests,China [J].Acta Ecologica Sinica, 2019, 39(14): 5326-5338] DOI: 10.5846 /stxb201809081925
[5] JIANG Cong, ZHU Biao, ZENG Hui. Soil extracellular enzyme stoichiometry reflects the unique habitat of karst tiankeng and helps to alleviate the P-limitation of soil microbes [J]. Ecological Indicators, 2022, 144: 109552. DOI: 10.1016/j.ecolind.2022.109552
[6] SOONG J L, FUCHSLUEGER L, MARAÑON-JIMENEZ S, et al. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling [J]. Global Change Biology, 2020, 26: 1953-1961. DOI: 10.1111/gcb.14962
[7] SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 2009, 462: 795-798. DOI: 10.1038/nature08632
[8] 郭银花, 赵洪涛, 高雨, 等. 山西太岳山油松林无机氮添加对土壤微生物养分限制类型的影响[J]. 应用与环境生物学报, 2022, 28(1): 137-144. [GUO Yinhua, ZHAO Hongtao, GAO Yu, et al. Effect of inorganic nitrogen addition on soil microbial nutrient requirement strategy in the Pinus tabuliformis forest in Taiyue Mountain, Shanxi province [J]. Chinese Journal of Applied Environment Biology, 2022, 28(1): 137-144] DOI: 10.19675/j.cnki.1006-687x.2020.10054
[9] YAN Yuchun, WANG Chu, ZHANG Jingmin, et al. Response of soil microbial biomass C, N, and P and microbial quotient to agriculture and agricultural abandonment in a meadow steppe of northeast China [J]. Soil and Tillage Research, 2022, 223: 105475. DOI: 10.1016/j.still.2022.105475
[10] TIWARI S, SINGH C, BOUDH S, et al. Land use change: A key ecological disturbance declines soil microbial biomass in dry tropical uplands [J]. Journal of Environmental Management, 2019, 242: 1-10. DOI: 10.1016/j.jenvman.2019.04.052
[11] MENDES L W, DE LIMA BROSSI M J, KURAMAE E E, et al. Land-use system shapes soil bacterial communities in southeastern Amazon region [J]. Applied Soil Ecology, 2015, 95: 151-160. DOI: 10.1016/j.apsoil.2015.06.005
[12] CHEN Hao, LI Dejun, MAO Qinggong, et al. Resource limitation of soil microbes in karst ecosystems [J]. Science of the Total Environment, 2019, 650: 241-248. DOI: 10.1016/j.scitotenv.2018.09.036
[13] 王克林, 岳跃民, 陈洪松, 等. 喀斯特石漠化综合治理及其区域恢复效应[J]. 生态学报, 2019, 39(20): 7432-7440. [WANG Kelin, YUE Yuemin, CHEN Hongsong, et al. The comprehensive treatment of karst rocky desertification and its regional restoration effects [J]. Acta Ecologica Sinica, 2019, 39(20): 7432-7440] DOI: 10.5846/stxb201909051849
[14] WANG Kelin, ZHANG Chunhua, CHEN Hongsong, et al. Karst landscapes of China: Patterns, ecosystem processes and services [J]. Landscape Ecology, 2019, 34: 2743-2763. DOI: 10.1007/s10980-019-00912-w
[15] 金章利, 刘高鹏, 周明涛, 等. 喀斯特山地草地土壤酶活性及土壤微生物碳代谢活性研究[J]. 水土保持研究, 2020, 27(3): 37-44.[JIN Zhangli, LIU Gaopeng, ZHOU Mingtao, et al. Soil enzyme activity and microbial carbon metabolism along an altitude gradient in grasslands of karst mountain [J]. Research of Soil and Water Conservation, 2020, 27(3): 37-44] DOI: 10.13869/j.cnki.rswc.2020.03.006
[16] 吴求生, 龙健, 李娟, 等. 茂兰喀斯特森林小生境类型对土壤微生物群落组成的影响[J]. 生态学报, 2019, 39(3): 1009-1018. [WU Qiusheng, LONG Jian, LI Juan, et al. Effects of different microhabitat types on soil microbial community composition in the Maolan Karst Forest in southwest China [J]. Acta Ecologica Sinica, 2019, 39(3): 1009-1018] DOI: 10.5846 /stxb201801110084
[17] 杨泽良, 任建行, 况园园, 等. 桂西北喀斯特不同植被演替阶段土壤微生物群落多样性[J]. 水土保持研究, 2019, 26(3): 185-191. [YANG Zeliang, REN Jianhang, KUANG Yuanyuan, et al. Dynamics of soil microbial communities along vegetation restoration gradient in karst area [J]. Research of Soil and Water Conservation, 2019, 26(3): 185-191] DOI: 10.13869/j.cnki.rswc.2019.03.027
[18] ZHAO Chang, LONG Jian, LIAO Hongkai, et al. Dynamics of soil microbial communities following vegetation succession in a karst mountain ecosystem, southwest China [J]. Scientific Reports, 2019, 9: 2160. DOI: 10.1038/s41598-018-36886-z
[19] 孙彩丽, 王艺伟, 王从军, 等. 喀斯特山区土地利用方式转变对土壤酶活性及其化学计量特征的影响[J]. 生态学报, 2021, 41(10): 4140-4149. [SUN Caili, WANG Yiwei, WANG Congjun, et al. Effects of land use conversion on soil extracellular enzyme activity and its stoichiometric characteristics in karst mountainous areas [J]. Acta Ecological Sinica, 2021, 41(10): 4140-4149] DOI: 10.5846/stxb202007161864
[20] CHEN Hao, LI Dejun, XIAO Kongcao, et al. Soil microbial processes and resource limitation in karst and non-karst forests [J]. Functional Ecology, 2018, 32: 1400-1409. DOI: 10.1111/1365-2435.13069
[21] ZHANG Yaohua, XU Xianli, LI Zhenwei, et al. Improvements in soil quality with vegetation succession in subtropical China karst [J]. Science of the Total Environment, 2021, 775: 145876. DOI: 10.1016/j.scitotenv.2021.145876
[22] LYU Maokui, NIE Yangyi, GIARDINA C P, et al. Litter quality and site characteristics interact to affect the response of priming effect to temperature in subtropical forests [J]. Functional Ecology, 2019, 33: 2226-2238. DOI: 10.1111/1365-2435.13428
[23] 白娥, 薛冰. 土地利用与土地覆盖变化对生态系统的影响[J]. 植物生态学报, 2020, 44(5): 543-552. [BAI Edith, XUE Bing. A review of influences of land use and land cover change on ecosystems [J]. Chinese Journal of Plant Ecology, 2020, 44(5): 543-552] DOI: 10.17521/cjpe.2020.0071
[24] CHEN Qiong, YANG Fan, CHENG Xiaoli. Effects of land use change type on soil microbial attributes and their controls: Data synthesis [J]. Ecological Indicators, 2022, 138: 108852. DOI: 10.1016/j.ecolind.2022.108852
[25] ZHANG Dan, ZHOU Zhonghao, ZHANG Bin, et al. The effects of agricultural management on selected soil properties of the arable soils in Tibet, China [J]. Catena, 2012, 93: 1-8. DOI: 10.1016/j.catena.2012.01.004
[26] 曹建华, 潘根兴, 袁道先. 不同植物凋落物对土壤有机碳淋失的影响及岩溶效应[J]. 第四纪研究, 2000, 20(4): 359-366. [CAO Jianhua, PAN Genxing, YUAN Daoxian. Influence of two litters on the soil organic carbon leachings and its karst effect [J]. Quaternary Sciences, 2000, 20(4): 359-366]
[27] YUN Yuan, WANG Hongmei, MAN Baiying, et al. The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification [J]. Frontiers in Microbiology, 2016, 7: 1955. DOI: 10.3389/fmicb.2016.01955
[28] COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss [J]. Nature Geoscience, 2015, 8: 776-779. DOI: 10.1038/NGEO2520
[29] WANG Y, ZHANG J H, ZHANG Z H. Influences of intensive tillage on water-stable aggregate distribution on a steep hillslope [J]. Soil and Tillage Research, 2015, 151: 82-92. DOI: 10.1016/j.still.2015.03.003
[30] FANG Xiangmin, WANG Qingli, ZHOU Wangming, et al. Land use effects on soil organic carbon, microbial biomass and microbial activity in Changbai Mountains of northeast China [J]. Chinese Geographical Science, 2014, 24: 297-306. DOI: 10.1007/s11769-014-0670-9
[31] 王成宝, 温美娟, 杨思存, 等. 耕作方式对灌耕灰钙土耕层物理性质和玉米产量的影响[J]. 干旱地区农业研究, 2022, 40(3): 170-177. [WANG Chengbao, WEN Meijuan, YANG Sicun, et al. Effects of different tillage practices on physical characteristics of irrigated sierozem soil and maize yield [J]. Agriculture Research in the Arid Areas, 2022, 40(3): 170-177] DOI: 10.7606 /j.issn.1000-7601.2022.03.21
[32] 颜晓元, 夏龙龙, 遆超普. 面向作物产量和环境双赢的氮肥施用策略[J]. 中国科学院院刊, 2018, 33(2): 177-183. [YAN Xiaoyuan, XIA Longlong, TI Chaopu. Win-win nitrogen management practices for improving crop yield and environmental sustainability [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 177-183] DOI: 10.16418/j.issn.1000-3045.2018.02.007
[33] XIAO Shuangshuang, YE Yingying, XIAO Dan, et al. Effects of tillage on soil N availability, aggregate size, and microbial biomass in a subtropical karst region [J]. Soil and Tillage Research, 2019, 192: 187-195. DOI: 10.1016/j.still.2019.05.006
[34] LIU Dong, HUANG Yimei, AN Shaoshan, et al. Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients [J]. Catena, 2018, 162: 345-353. DOI: 10.1016/j.catena.2017.10.028
[35] 王艳玲, 章永辉, 何园球. 红壤基质组分对磷吸持指数的影响[J]. 土壤学报, 2012, 49(3): 552-559. [WANG Yanling, ZHANG Yonghui, HE Yuanqiu. Effect of soil matrix components on phosphate sorption index in red soil [J]. Acta Pedologica Sinica, 2012, 49(3): 552-559] DOI: 10.11766/trxb201107140260
[36] WANG Chu, LI Linghao, YAN Yuchun, et al. Effects of cultivation and agricultural abandonment on soil carbon, nitrogen and phosphorus in a meadow steppe in eastern Inner Mongolia [J]. Agriculture, Ecosystems and Environment, 2021, 309: 107284. DOI: 10.1016/j.agee.2020.107284
[37] 吴秀芝, 刘秉儒, 阎欣, 等. 荒漠草地土壤微生物生物量和微生物熵对沙漠化的响应[J].应用生态学报, 2019, 30(8): 2691-2698. [WU Xiuzhi, LIU Bingru, YAN Xin, et al. Response of soil microbial biomass and microbial entropy to desertification in desert grassland [J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2691-2698] DOI: 10.13287/j.1001-9332.201908.009
[38] 夏捷, 陈胜, 吴一凡, 等. 种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 127-134. [XIA Jie, CHEN Sheng, WU Yifan, et al. Dynamic changes of soil microbial biomass and microbial entropy after planting Dictyophora indusiata in Phyllostachys edulis forests [J]. Journal of Nanjing Forestry University(Natural Science Edition), 2022, 46(4): 127-134] DOI: 10.12302 /j.issn.1000-2006.202101018
[39] MALIK A A, PUISSANT J, BUCKERIDGE K M, et al. Land use driven change in soil pH affects microbial carbon cycling processes [J]. Nature Communications, 2018, 9: 1-10. DOI: 10.1038/s41467-018-05980-1
[40] HAGERTY S B, VAN GROENIGEN K J, ALLISON S D, et al. Accelerated microbial turnover but constant growth efficiency with warming in soil [J]. Nature Climate Change, 2014, 4: 903-906. DOI: 10.1038/NCLIMATE2361
[41] SCHIMEL J, BECERRA C A, BLANKINSHIP J. Estimating decay dynamics for enzyme activities in soils from different ecosystems [J]. Soil Biology and Biochemistry, 2017, 114: 5-11. DOI: 10.1016/j.soilbio.2017.06.023
[42] FENG Jiao, WU Junjun, ZHANG Qian, et al. Stimulation of nitrogen-hydrolyzing enzymes in soil aggregates mitigates nitrogen constraint for carbon sequestration following afforestation in subtropical China [J]. Soil Biology and Biochemistry, 2018, 123: 136-144. DOI: 10.1016/j.soilbio. 2018.05.013
[43] LI Jiabao, XIE Ting, ZHU He, et al. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem [J]. Geoderma, 2021, 404: 115376. DOI: 10.1016/j.geoderma.2021.115376
[44] ZHANG Qian, FENG Jiao, WU Junjun, et al. Variations in carbon-decomposition enzyme activities respond differently to land use change in central China [J]. Land Degradation Development, 2019, 30: 459-469. DOI: 10.1002/ldr.3240
[45] WANG Bing, XUE Sha, LIU Guobin, et al. Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, northwest China [J]. Catena, 2012, 92: 186-195. DOI: 10.1016/j.catena.2011.12.004
[46] RAIESI F, BEHESHTI A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran [J]. Applied Soil Ecology, 2014, 75: 63-70. DOI: 10.1016/j.apsoil.2013.10.012
[47] BOWLES T M, ACOSTA-MARTI'NEZ V, CALDERÓN F, et al. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape [J]. Soil Biology and Biochemistry, 2014, 68: 252-262. DOI: 10.1016/j.soilbio.2013.10.004
[48] GARCIA-FRANCO N, MARTÍNEZ-MENA M, GOBERNA M, et al. Changes in soil aggregation and microbial community structure control carbon sequestration after afforestation of semiarid shrublands [J]. Soil Biology and Biochemistry, 2015, 87: 110-121. DOI: 10.1016/j.soilbio.2015.04.012
[49] CUSACK D F, SILVER W L, TORN M S, et al. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests [J]. Ecology, 2011, 92: 621-632. DOI: 10.1890/10-0459.1
[50] CUI Yongxing, FANG Linchuan, GUO Xiaobin, et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China [J]. Soil Biology and Biochemistry, 2018, 116: 11-21. DOI: 10.1016/j.soilbio.2017.09.025

相似文献/References:

[1]陈 剑,李灿雯,杨文忠,等.基于土地覆被的局域社会生态系统动态平衡[J].山地学报,2014,(03):300.
 CHEN Jian,LI Canwen,YANG Wenzhong,et al.Dynamic Equilibrium of Local Social-Ecological Systems Based on Land Cover[J].Mountain Research,2014,(1):300.
[2]杨勇,邓伟,张继飞,等.都江堰城市空间形态演变周期性特征及其驱动机制[J].山地学报,2013,(03):300.
 YANG Yong,DENG Wei,ZHANG Jifei,et al.The Periodicity Scenarios of Urban Morphology and Its Driving Factors in Dujiangyan[J].Mountain Research,2013,(1):300.
[3]王媛媛,周忠发,魏小岛,等.石漠化景观格局对土地利用时空演变的响应[J].山地学报,2013,(03):307.
 WANG Yuanyuan,ZHOU Zhongfa,WEI Xiaodao.Rocky Desertification Landscape Pattern on Spatiotemporal Evolution of Land Use the Response[J].Mountain Research,2013,(1):307.
[4]郑云龙,高 鹏,张立勇,等.辽西大黑山生态修复区土地利用格局变化及驱动力[J].山地学报,2014,(06):691.
 ZHENG Yunlong,GAO Peng,ZHANG Liyong,et al.Changes of Land Use and Its Driving Forces of the Ecological Restoration Area in Dahei Mountain in the West of Liaoning Province[J].Mountain Research,2014,(1):691.
[5]刘燕华,吕昌河.西藏昌都地区地域分异特征[J].山地学报,1990,(01):34.
[6]高世忠,程地玖,任革非.川江流域防护林区土地利用的卫片图像判读[J].山地学报,1992,(04):234.
[7]柴宗新.试论土地侵蚀[J].山地学报,1996,(02):117.
[8]秦明周.红壤丘陵区农业土地利用对土壤肥力的影响及评价[J].山地学报,1999,(01):72.
[9]吴承祯,洪伟.中国土地利用程度的区域分异规律模拟研究[J].山地学报,1999,(04):333.
[10]杨子生,贺梅.滇东北山区土地资源开发利用战略Ⅱ.战略方针、目标、方案及措施[J].山地学报,1999,(S1):76.

备注/Memo

备注/Memo:
收稿日期(Received date): 2022-09-17; 改回日期(Accepted date): 2023-02-20
基金项目(Foundation item): 中央引导地方科技发展基金项目(桂科AD19245133; 桂科AD20238078); 中国博士后科学基金(2022M713194); 南宁师范大学科研启动项目(602021239257, 602021239137); 北部湾环境演变与资源利用教育部重点实验室开放课题(NNNU-KLOP-X1917, GTEU-KLOP-X1709)。[Local Science and Technology Development in Central Government Guides(AD19245133, AD20238078); China Postdoctoral Science Foundation(2022M713194); Project for Science Research Initiation of Nanning Normal University(602021239257, 602021239137); Opening Foundation of Key Laboratory of Environment Change and Resources Use in Beibu Gulf Ministry of Education(NNNU-KLOP-X1917, GTEU-KLOP-X1709)]
作者简介(Biography): 巢林(1988-),男,博士,安徽六安人,助理研究员,主要研究方向:森林生态学。[CHAO Lin(1988-), male, Ph.D., born in Lu'an, Anhui province, assistant professor of research, research on forest ecology] E-mail: fjchaolin@126.com
*通讯作者(Corresponding author): 刘艳艳(1986-), 女,博士,助理研究员,主要研究方向:植物生理生态。[LIU Yanyan(1986-), female, Ph.D., assistant professor of research, research on plant physiology ecology] E-mail: liuyanyan5000@163.com

更新日期/Last Update: 2023-01-30