[1]蒋 豪,涂卫国,王玉杰,等.疏伐抚育对大熊猫栖息地八月竹纯林土壤细菌群落多样性的影响[J].山地学报,2023,(1):19-27.[doi:10.16089/j.cnki.1008-2786.000727]
 JIANG Hao,TU Weiguo,WANG Yujie,et al.Thinning Effect on the Diversity of Soil Bacterial Communities inDwarf Bamboo(Chimonobambusa szechuanensis) Pure Stands in Chinese Giant Panda Habitat[J].Mountain Research,2023,(1):19-27.[doi:10.16089/j.cnki.1008-2786.000727]
点击复制

疏伐抚育对大熊猫栖息地八月竹纯林土壤细菌群落多样性的影响
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第1期
页码:
19-27
栏目:
山地环境
出版日期:
2023-01-20

文章信息/Info

Title:
Thinning Effect on the Diversity of Soil Bacterial Communities inDwarf Bamboo(Chimonobambusa szechuanensis) Pure Stands in Chinese Giant Panda Habitat
文章编号:
1008-2786-(2023)1-19-9
作者:
蒋 豪1涂卫国2王玉杰2李 玲2付明霞3张远彬1*
(1. 中国科学院、水利部成都山地灾害与环境研究所,成都 610299; 2. 四川省自然资源科学研究院,成都 610015; 3. 荥经县大相岭自然保护区管理局,四川 雅安 625200)
Author(s):
JIANG Hao1 TU Weiguo2 WANG Yujie2 LI Ling2 FU Mingxia3 ZHANG Yuanbin1*
(1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; 2. Sichuan Provincial Institute of Natural Resource Sciences, Chengdu 610015, China; 3. Sichuan Daxiangling Natural Reserve Administration, Ya'an 625200, Sichuan, China)
关键词:
大熊猫国家公园 八月竹 纯林 疏伐 土壤微生物组 疏伐抚育
Keywords:
thinning Chimonobambusa szechuanensis the Giant Panda National Park China pure stands soil microbiome
分类号:
S75
DOI:
10.16089/j.cnki.1008-2786.000727
文献标志码:
A
摘要:
疏伐抚育可改善大熊猫栖息地土壤质量和森林生态系统功能、提升生物多样性。然而,现有研究主要以提升人工用材林木材产量为主,对以提升自然保护地栖息地功能属性为目的的森林疏伐抚育如何影响地下生态过程,特别是土壤微生物群落变化研究相对较少。本文以大熊猫国家公园大相岭片区八月竹(Chimonobambusa szechuanensis)纯林为研究对象开展疏伐抚育,分析两种处理对纯林土壤理化性质和细菌微生物组的影响,重点研究疏伐抚育一年后土壤细菌群落多样性变化。结果表明:(1)不同疏伐抚育模式对土壤细菌群落影响差异较大。以促进主食竹更新复壮为目的的疏伐抚育模式(处理A)显著提高了土壤细菌群落Sobs指数(P=0.024)和Chao指数(P=0.027),表现出更高的群落丰富度。而以促进纯竹林向大熊猫更为喜爱的竹阔混交林转变的疏伐抚育模式(处理B)对纯林保留带中地下生态系统的影响并不显著。(2)LEfSe分析(LDA score>3,P<0.05)发现,八月竹林土壤细菌群落核心菌门为酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)和变形菌门(Proteobacteria)。与八月竹纯林相比,处理A显著提高了土壤pH值(pH=5.05,P<0.001),但有机碳(50.2 g/kg,P<0.001)、全氮(5.04 g/kg,P<0.05)和微生物生物量碳(700.54 mg/kg, P<0.01)含量均显著降低。(3)RDA分析表明土壤细菌群落门丰度变化主要与pH值(r2=0.45,P<0.05)和全氮含量(r2=0.39,P<0.05)变化有关。上述研究结果可以为进一步研究与纯竹林疏伐抚育相关的土壤微生物功能菌群提供参考。
Abstract:
Thinning is a necessary means to improve the soil quality and forest ecosystem function of giant panda habitat and enhance biodiversity. However, past scientific attentions was paid more to improving the timber yield of artificial forest, but there were relatively few studies on how thinning for the purpose of improving the functional attributes of habitats in nature reserves affect underground ecological processes, especially the changes of soil microbial communities.In this study, it took pure bamboo(Chimonobambusa szechuanensis)stands in the Daxiangling district of the Giant Panda National Park of China as a case study for control-experiments of thinning. Two thinning patterns(A vs B)were designed to apply separately to two pure bamboo stands, a year later followed by a careful examination of the physical and chemical properties of the pure bamboo soils and the bacterial microbiome, particularly the changes of soil bacterial community diversity.We have the following facts:(1)Different thinning patterns had different effects on soil bacterial community. As for the pattern A with a purpose of promoting the prosperity of staple bamboo, it had marked positive effects on the soil bacterial communities. It significantly increased the Sobs index(P=0.024)and Chao index(P=0.027)of soil bacterial community, exhibiting higher community richness as compared to those in natural pure bamboo stands. In contrast, the effect of the pattern B, which intended to expedite a transition of pure bamboo stands to broad-leaved forest, which are popular with giant pandas, had no significant impact on the underground ecosystem in reserved zone of pure forest.(2)LEfSe analysis(LDA score > 3, P<0.05)revealed that the core taxa of soil bacterial communities in the pure stands were Proteobacteria, Acidobacteria, and Actinobacteria. Furthermore, the contents of organic carbon(50.2 g/kg, P<0.001), total nitrogen(5.04 g/kg, P<0.05), and microbial biomass carbon(700.54 mg/kg, P<0.01)were significantly reduced in pattern A, while soil pH(pH = 5.05, P<0.001)was significantly increased.(3)The variation in some bacterial phyla abundance was significantly correlated with soil pH(r2 = 0.45, P<0.05)and total nitrogen content(r2 = 0.39, P<0.05). In conclusion, this study provides insights into the soil functional microbes associated with thinning patterns in pure bamboo stands.

参考文献/References:

[1] VERSCHUYL J, RIFFELL S, MILLER D, et al. Biodiversity response to intensive biomass production from forest thinning in North American forests-A meta-analysis [J]. Forest Ecology and Management, 2011, 261: 221-232. DOI: 10.1016/j.foreco.2010.10.010
[2] 宋启亮,董希斌,李芝茹. 不同改造方式对大兴安岭3种类型低质林生物多样性的影响[J]. 东北林业大学学报,2012,40(4): 85-89. [SONG Qiliang, DONG Xibin, LI Zhiru. Effects of different transformation measures on biodiversity of three types of low-quality forest stands in Great Xing'an Mountains [J]. Journal of Northeast Forestry University, 2012, 40(4): 85-89] DOI: 10.3969/j.issn.1000-5382.2012.04.021
[3] 杨育林,李贤伟,周义贵,等. 林窗式疏伐对川中丘陵区柏木人工林生长和植物多样性的影响[J]. 应用与环境生物学报,2014, 20(6): 971-977. [YANG Yulin, LI Xianwei, ZHOU Yigui, et al. Effects of gap thinning on growth and diversity of a cypress plantation in the hilly region of central Sichuan [J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(6): 971-977] DOI: 10.3724/SP.J.1145.2014.05004
[4] 陈绍栓,许建伟,吴载璋,等. 不同强度疏伐改造对马尾松林分水源涵养功能时空格局的影响[J]. 生态学报,2017, 37(20): 6753-6760. [CHEN Shaoshuan, XU Jianwei, WU Zaizhang, et al. Effects of different thinning intensities on temporal and spatial patterns of water conservation of Pinus massoniana [J]. Acta Ecologica Sinica, 2017, 37(20): 6753-6760] DOI: 10.5846/stxb201608081628
[5] DEL CAMPO A D, GONZÁLEZ-SANCHIS M, MOLINA A J, et al. Effectiveness of water-oriented thinning in two semiarid forests: The redistribution of increased net rainfall into soil water, drainage and runoff [J]. Forest Ecology and Management, 2019, 438: 163-175. DOI: 10.1016/j.foreco.2019.02.020
[6] MOLINA A J, GONZÁLEZ-SANCHIS M, BIEL C, et al. Ecohydrological turnover in overstocked Aleppo pine plantations: Does the effect of thinning, in relation to water, persist at the mid-term? [J]. Forest Ecology and Management, 2021, 483: 118781. DOI: 10.1016/j.foreco.2020.118781
[7] 李平,李凤汀,范川,等. 川中丘陵区柏木低效林改造模式植物多样性对土壤有机碳的影响[J]. 生态学报,2015, 35(8): 2667-2675. [LI Ping, LI Fengting, FAN Chuan, et al. Effects of plant diversity on soil organic carbon under different reconstructing patterns in low efficiency stands of Cuprssus funebris in the hilly region of central Sichuan [J]. Acta Ecologica Sinica, 2015, 35(8): 2667-2675] DOI: 10.5846/stxb201307181913
[8] LIN Wanrou, WANG Pihan, CHEN Wencheng, et al. Responses of soil fungal populations and communities to the thinning of Cryptomeria Japonica forests [J]. Microbes and Environments, 2016, 31(1): 19-26. DOI: 10.1264/jsme2.ME15127
[9] KIM S J, LI G L, HAN S H, et al. Microbial biomass and enzymatic responses to temperate oak and larch forest thinning: Influential factors for the site-specific changes [J]. Science of the Total Environment, 2019, 651: 2068-2079. DOI: 10.1016/j.scitotenv.2018.10.153
[10] BEVER J D. Soil community feedback and the coexistence of competitors: Conceptual frameworks and empirical tests [J]. New Phytologist, 2003, 157: 465-473. DOI: 10.1046/j.1469-8137.2003.00714.x
[11] 王成,庞学勇,包维楷. 低强度林窗式疏伐对云杉人工纯林地表微气候和土壤养分的短期影响[J]. 应用生态学报,2010, 21(3): 541-548. [WANG Cheng, PANG Xueyong, BAO Weikai. Short term effects of low intensity thinning simulated by gap on ground microclimate and soil nutrients of pure spruce plantation [J]. Chinese Journal of Applied Ecology, 2010, 21(3): 541-548]
[12] WU Ran, CHENG Xiaoqin, HAN Hairong. The effect of forest thinning on soil microbial community structure and function [J]. Forests, 2019, 10: 352. DOI: 10.3390/F10040352
[13] ZHOU Tao, WANG Chuankuan, ZHOU Zhenghu. Impacts of forest thinning on soil microbial community structure and extracellular enzyme activities: A global meta-analysis [J]. Soil Biology and Biochemistry, 2020, 149: 107915. DOI: 10.1016/j.soilbio.2020.107915
[14] 国家林业和草原局. 全国第四次大熊猫调查报告[M]. 北京:科学出版社,2021:24. [National Forestry and Grassland Administration. The 4th national survey report on giant panda in China [M]. Beijing: Science Press, 2021: 24]
[15] 高新宇,刘阳,刘定震,等. 秦岭大熊猫冬春季节对巴山木竹竹林生长指标的选择[J]. 动物学研究,2006, 27(2): 157-162. [GAO Xinyu, LIU Yang, LIU Dingzhen, et al. Analysis on the growth of bamboo species Bashania fargesii selection of giant pandas in Qinling Mountains [J]. Zoological Research, 2006, 27(2): 157-162] DOI: 10.3321/j.issn:0254-5853.2006.02.005
[16] YU Guangzhi, JIANG Zhigang, ZHAO Zhilong, et al. Feeding habitat of giant pandas(Ailuropoda melanoleuca): Why do they prefer bamboo patch edges? [J]. Journal of Zoology, 2003, 261: 307-312. DOI: 10.1017/S0952836903004242
[17] CHEN Shengyun, ZHAO Qian, LIU Wenjie, et al. Effects of freeze-thaw cycles on soil N2O concentration and flux in the permafrost regions of the Qinghai-Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 69-79. DOI: 10.3724/SP.J.1226.2018.00069
[18] MORI H, MARUYAMA F, KATO H, et al. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA Genes [J]. DNA Research, 2014, 21: 217-227. DOI: 10.1093/dnares/dst052
[19] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114-2120. DOI: 10.1093/bioinformatics/btu170
[20] MAGOC T, SALZBERG S L. FLASH: Fast length adjustment of short reads to improve genome assemblies [J]. Bioinformatics, 2011, 27(21): 2957-2963. DOI: 10.1093/bioinformatics/btr507
[21] EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads [J]. Nature Methods, 2013, 10(10): 996-998. DOI: 10.1038/NMETH.2604
[22] QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools [J]. Nucleic Acids Research, 2013, 41: D590-D596. DOI: 10.1093/nar/gks1219
[23] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data [J]. Nature Methods, 2010, 7(5): 335-336. DOI: 10.1038/NMETH.F.303
[24] SEGATA N, IZARD J, WALDRON L, et al. Metagenomic biomarker discovery and explanation [J]. Genome Biology, 2011, 12: R60. DOI: 10.1186/gb-2011-12-6-r60
[25] GIUGGIOLA A, OGEE J, RIGLING A, et al. Improvement of water and light availability after thinning at a xeric site: Which matters more? A dual isotope approach [J]. New Phytologist, 2016, 210: 108-121. DOI: 10.1111/nph.13748
[26] SOHN J A, SAHA S, BAUHUS J. Potential of forest thinning to mitigate drought stress: A meta-analysis [J]. Forest Ecology and Management, 2016, 380: 261-273. DOI: 10.1016/j.foreco.2016.07.046
[27] CHEN Xinli, WANG Dong, CHEN Xin, et al. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation [J]. Applied Soil Ecology, 2015, 92: 35-44. DOI: 10.1016/j.apsoil.2015.01.018
[28] BARG A K, EDMONDS R L. Influence of partial cutting on site microclimate, soil nitrogen dynamics, and microbial biomass in Douglas-fir stands in western Washington [J]. Canadian Journal of Forest Research, 1999, 29: 705-713. DOI: 10.1139/x99-045
[29] CHAPARRO J M, BADRI D V, VIVANCO J M. Rhizosphere microbiome assemblage is affected by plant development [J]. The ISME Journal, 2014, 8: 790-803. DOI: 10.1038/ismej.2013.196
[30] XIONG Chao, ZHU Yongguan, WANG Juntao, et al. Host selection shapes crop microbiome assembly and network complexity [J]. New Phytologist, 2020, 229: 1091-1104. DOI: 10.1111/nph.16890
[31] WARD N L, CHALLACOMBE J F, JANSSEN P H, et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils [J]. Applied and Environmental Microbiology, 2009, 75(7): 2046-2056. DOI:10.1128/AEM.02294-08
[32] 杨安娜,陆云峰,张俊红,等. 杉木人工林土壤养分及酸杆菌群落结构变化[J]. 林业科学, 2019,55(1): 119-127. [YANG Anna, LU Yunfeng, ZHANG Junhong, et al. Changes in soil nutrients and Acidobacteria community structure in Cunninghamia lanceolata plantations [J]. Scientia Silvae Sinicae, 2019, 55(1): 119-127] DOI: 10.11707/j.1001-7488.20190114
[33] JONES R T, ROBESON M S, LAUBER C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses [J]. The ISME Journal, 2009, 3: 442-453. DOI: 10.1038/ismej.2008.127
[34] DAIMS H, LÜCKER S, WAGNER M, et al. A new perspective on microbes formerly known as nitrite-oxidizing bacteria [J]. Trends in Microbiology, 2016, 9: 699-712. DOI: 10.1016/j.tim.2016.05.004
[35] SPEIRS L B M, RICE D T F, PETROVSKI S, et al. The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge [J]. Frontiers in Microbiology, 2019, 10: 2015. DOI: 10.3389/fmicb.2019.02015
[36] CURTIN D, CAMPBELL C A, JALIL A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils [J]. Soil Biology and Biochemistry, 1998, 30(1): 57-64. DOI: 10.1016/s0038-0717(97)00094-1
[37] ROUSK J, BAATH E, BROOKES P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. The ISME Journal, 2010, 4: 1340-1351. DOI: 10.1038/ismej.2010.58
[38] PHILIPPOT L, SPOR A, HENAULT C, et al. Loss in microbial diversity affects nitrogen cycling in soil [J]. The ISME Journal, 2013, 7: 1609-1619. DOI: 10.1038/ismej.2013.34
[39] BAHRAM M, NETHERWAY T, HILDEBRAND F, et al. Plant nutrient-acquisition strategies drive topsoil microbiome structure and function [J]. New Phytologist, 2020, 227:1189-1199. DOI: 10.1111/nph.16598
[40] LANGE M, EISENHAUER N, SIERRA C A, et al. Plant diversity increases soil microbial activity and soil carbon storage [J]. Nature Communications, 2015, 6: 6707. DOI: 10.1038/ncomms7707

备注/Memo

备注/Memo:
收稿日期(Received date): 2022-10-11; 改回日期(Accepted date):2023-02-24
基金项目(Foundation item): 四川省科技计划(2021YFS0280,2020YFS0023,2022114,2018SZDZX0035)。[Science and Technology Projects in Sichuan Province(2021YFS0280, 2020YFS0023, 2022114, 2018SZDZX0035)]
作者简介(Biography): 蒋豪(1983-),男,四川汶川人,博士,副研究员,主要研究方向:植物生态学。[JIANG Hao(1983-), male, born in Wenchuan, Sichuan province, Ph. D., associate professor, research on plant ecology] E-mail: jianghao@imde.ac.cn
*通讯作者(Corresponding author): 张远彬(1973-),男,四川宜宾人,博士,副研究员,主要研究方向:植物生态学。[ZHANG Yuanbin(1973-), male, born in Yibin, Sichuan province, Ph.D., associate professor, research on plant ecology] E-mail: zhangyb@imde.ac.cn

更新日期/Last Update: 2023-01-30