[1]贾龙玉a,b,管增艳a,等.贡嘎山树线上方杜鹃灌木径向生长对气候变化的响应特征[J].山地学报,2021,(5):646-657.[doi:10.16089/j.cnki.1008-2786.000627)]
 JIA Longyuab,GUAN Zengyanab,CHANG Ruiying,et al.Response of Radical Growth of Rhododendron faberi subsp. Prattii to Climate Change above Treeline in the Gongga Mountain, China[J].Mountain Research,2021,(5):646-657.[doi:10.16089/j.cnki.1008-2786.000627)]
点击复制

贡嘎山树线上方杜鹃灌木径向生长对气候变化的响应特征()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第5期
页码:
646-657
栏目:
山地环境
出版日期:
2021-09-25

文章信息/Info

Title:
Response of Radical Growth of Rhododendron faberi subsp. Prattii to Climate Change above Treeline in the Gongga Mountain, China
文章编号:
1008-2786-(2021)5-646-12
作者:
贾龙玉1a 1b管增艳1a 1b常瑞英2石松林1a 1b*彭培好1a 1b
1.成都理工大学 a.旅游与城乡规划学院; b.生态资源与景观研究所,成都 610059; 2.中国科学院、水利部成都山地灾害与环境研究所,成都 610041
Author(s):
JIA Longyu1a1b GUAN Zengyan1a1b CHANG Ruiying2 SHI Songlin1a1b* PENG Peihao1a1b
1. a. College of Tourism and Urban-Rural Planning; b. Ecological Resources and Landscape Architecture Institute, Chengdu University of Technology, Chengdu 610059, China; 2. Institute of Mountain hazards and Environment, Chinese Academy of Sciences, Chengdu 610041,China
关键词:
气候变化 径向生长 大叶金顶杜鹃 树轮生态学 贡嘎山
Keywords:
climate change radial growth Rhododendron faberi subsp. Prattii dendroecology the Gongga Mountain
分类号:
Q948
DOI:
10.16089/j.cnki.1008-2786.000627)
文献标志码:
A
摘要:
气候变暖深刻影响着高山树线上方的灌木生长,然而目前其对气候变化的响应特征仍不清楚。本文以贡嘎山树线上方的大叶金顶杜鹃(Rhododendron faberi subsp. Prattii)为研究对象,分别采用负指数函数法(CD)、断面积增量(BAI)以及区域曲线标准法(RCS)去除生长趋势,建立标准化年表,分析大叶金顶杜鹃生长特征,并用相关分析、偏相关分析和滑动相关分析来探讨大叶金顶杜鹃径向生长与气候因子的关系。结果如下:(1)Mann-Kendall趋势检验结果表明1980—2018年断面积增量BAI增加趋势最为显著;(2)相关分析结果表明BAI与前一年7月最高温度、前一年9月平均温度、当年7月和9月最高温度以及平均温度呈现显著正相关关系,与前一年以及当年6月、7月、9月相对湿度呈现显著负相关关系; 在季节尺度上,BAI与前一年7—11月平均温度、当年7—9月平均温度和当年4—9月最高温度呈现显著正相关,与前一年7—9月以及当年2—9月平均相对湿度显著负相关;(3)响应函数和偏相关分析分析结果表明当年7月最高温度是影响杜鹃灌木径向生长的关键生态因子;(4)滑动相关分析揭示了在全球变暖背景下,分布在贡嘎山树线上方的大叶金顶杜鹃的径向生长将会增加。本研究结果有助于更加全面地理解与预测气候变化对树线上方灌木生长的影响。
Abstract:
Global warming have a significant effect on shrub growth above treelines, whereas its response to climate change still remains unclear. In order to determine shrub radial growth trends and explore its responses to climate, standard dendrochronological procedures were performed using tree-ring materials of Rhododendron faberi subsp. Prattii(RF)collected above alpine treelines in Gongga Mountain. Three detrending strategies, including conservative detrending(CD), regional curve standardization(RCS)and basal area index(BAI)were used to remove age-related growth trends and construct standardized RF ring-width chronologies. Pearson correlation coefficients, partial and moving correlation analyses were conducted to research the connection of the RF radial growth and climate variabilities. We conclude that:(1)The area of radial growth enhancement was most significant for BAI chronology as suggested by Mann-Kendall trend test.(2)Pearson correlation analysis suggested that the radial growth of RF was significantly and positively correlated with July maximum temperature and mean September temperature of the previous year, both mean and maximum temperature in July and September of the current year. The radical growth of RF was significantly and negatively associated with relative humidity in June, July, and September of both the previous and current year. The radial growth of RF was also negatively correlated with the relative humidity of June, July and September in both the previous and current year. Climatic response at seasonal scale was explored, which suggested that BAI chronology was significantly and positively associated with July-November mean temperature of the previous year, July-September mean temperature and April-September maximum temperature of the current year.(3)The response function and partial correlations suggested that the July maximum temperature of the current year was the key factor dominating the RF radial growth in Gongga Mountain.(4)The moving correlation analysis implied the RF above treeline in Gongga Mountain increased with climate warming. This study could contribute to understand and predict the climatic response of shrub growth above treelines.

参考文献/References:

[1] GIRARDIN M P, HOGG E H, BERNIER P Y, et al. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming [J]. Global Change Biology, 2016, 22(2): 627-643. DOI: 10.1111/gcb.13072
[2] CHARNEY N D, BABST F, POULTER B, et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth [J]. Ecology Letters, 2016, 19(9): 1119-1128. DOI: 10.1111/ele.12650
[3] LIU H Y, WILLIAMS A P, ALLEN C D, et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia [J]. Global Change Biology, 2013, 19(8): 2500-2510. DOI: 10.1111/gcb.12217
[4] WILLIAMS A P, ALLEN C D, MACALADY A K, et al. Temperature as a potent driver of regional forest drought stress and tree mortality [J]. Nature Climate Change, 2013, 3(3): 292-297.DOI: 10.1038/NCLIMATE1693
[5] TRANQUILLINI W, BENECKE U. Physiological ecology of the alpine timberline: Tree existence at high altitudes with special reference to the European Alps [M]. Berlin: Springer-Verlag, 1979. DOI: 10.1007/978-3-642-67107-4
[6] KÖRNER C, PAULSEN J. A world-wide study of high altitude treeline temperatures [J]. Journal of Biogeography, 2004, 31(5): 713-732. DOI: 10.1111/j.1365-2699.2003.01043.x
[7] 朱芬萌,安树青,关保华,等. 生态交错带及其研究进展[J]. 生态学报,2007,27(7):3032-3042. [ZHU Fenmeng, AN Shuqing, GUAN Baohua, et al. A review of ecotone: Concepts, attributes, theories and research advances [J]. Acta Ecologica Sinica, 2007, 27(7): 3032-3042]
[8] 李明财,罗天祥,朱教君,等. 高山林线形成机理及植物相关生理生态学特性研究进展[J]. 生态学报,2008,28(11):5583-5591. [LI Mingcai, LUO Tianxiang, ZHU Jiaojun, et al. Advances in formation mechanism of alpine timberline and associated physio-ecological characteristics of plants [J]. Acta Ecologica Sinica, 2008, 28(11): 5583-5591]
[9] HOFGAARD A, HARPER K A. Tree recruitment, growth, and distribution at the circumpolar forest-tundra transition: Introduction [J]. Canadian Journal of Forest Research, 2011,41(3): 435-436. DOI:10.1139/X10-238
[10] BATLLORI E, GUTIÉRREZ E. Regional tree line dynamics in response to global change in the Pyrenees [J]. Journal of Ecology, 2008, 96(6): 1275-1288. DOI: 10.1111/j.1365-2745.2008.01429.x
[11] ROSSLER O, BRÄUNING A, LOFFLER J, et al. Dynamics and driving forces of treeline fluctuation and regeneration in Central Norway during the past decades [J]. Erdkunde, 2008, 62(2): 117-128. DOI: 10.3112/erdkunde.2008.02.02
[12] LIANG E Y, WANG Y F, ECKSTEIN D, et al. Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming [J]. New Phytologist, 2011,190(3): 760-769. DOI: 10.1111/j.1469-8137.2010.03623.x
[13] 尚华明,洪建昌,张瑞波,等. 树轮记录的西藏东北部过去552 a上年10月至当年5月降水量变化[J]. 山地学报,2018, 36(6): 821-832. [SHANG Huaming, HONG Jianchang, ZHANG Ruibo, et al. Tree-ring recorded 522-year precipitation from previous October to May in northeastern Tibet, China [J]. Mountain Research, 2018, 36(6): 821-832] DOI: 10. 16089/j.cnki.1008-2786.000378
[14] 陈峰, 袁玉江, 喻树龙.闽中北柳杉树轮指示的气候信号与季风区不同地域干湿变化关系[J]. 山地学报,2015,33(6): 690-695. [CHEN Feng,YUAN Yujiang,YU Shulong. Drought signals in the tree-ring width record of Cedar(Cryptomeria
fortunei)trees from north central Fujian: Linkages to the monsoonal regions [J]. Mountain Research, 2015, 33(6): 690-695] DOI: 16089/j.cnki.1008-2786.000083
[15] COOK E R, KAIRIUKSTIS L A. Methods of dendrochronology: Applications in the environmental sciences [M]. London: Kluwer, 1990: 51-54. DOI: 10.1007/978-94-015-7879-0
[16] WOODCOCK H, BRADLEY R. Salix arctica(pall.): Its potential for dendroclimatological studies in the high arctic [J]. Dendrochronologia, 1994, 12: 11-22.
[17] BÄR A, BRÄUNING A, LÖFFLER J, et al. Dendroecology of dwarf shrubs in the high mountains of Norway: A methodological approach [J]. Dendrochronologia, 2006, 24(1): 17-27. DOI: 10.1016/j.dendro.2006.05.001
[18] BARICHIVICH J, SAUCHYN D J, LARA A, et al. Climate signals in high elevation tree-rings from the semiarid Andes of north-central Chile: Responses to regional and large-scale variability [J]. Palaeogeography, 2009, 281:320-333. DOI: 10.1016/j.palaeo.2007.10.033
[19] POORE R E, LAMANNA C A, EBERSOLE J J, et al. Controls on radial growth of mountain big sagebrush and implications for climate change [J]. Western North American Naturalist, 2009, 69(4): 556-562.
[20] XIAO Shengchuan, XIAO Honglang, KOBAYASHI O, et al. Dendroclimatological investigations of sea buckthorn(Hippophaer hamnoides)and reconstruction of the equilibrium line altitude of the July First Glacier in the western Qilian Mountains, northwestern China [J]. Tree-Ring Research, 2007, 63(1): 15-26.
[21] GRISSINO-MAYER H D. An updated list of species used in tree-ring research [J]. Tree-Ring Bulletin, 1993, 53: 17-43.
[22] SCHWEINGRUBER F H, POSCHLOD P. Growth rings in herbs and shrubs: Life span, age determination and stem anatomy [J]. Forest Snow and Landscape Research, 2005, 79(3): 195-415.
[23] LIANG E Y, ECKSTEIN D. Dendrochronological potential of the alpine shrub Rhododendron nivale on the south-eastern Tibetan Plateau [J]. Annals of Botany, 2009, 104: 665 -670. DOI: 10.1093/aob/mcp158
[24] ETTL G J, PETERSON D L. Growth response of subalpine fir(Abies lasiocarpa)to climate in the Olympic Mountains, Washington, USA [J]. Global Change Biology, 1995,1(3):213-230.
[25] LIANG Eryuan, WANG Yafeng, XU Yan, et al. Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau [J]. Trees-Structure and Function, 2010, 24: 363-373. DOI: 10.1007/s00468-009-0406-0
[26] SIDOR C G, POPA I, VLAD R, et al. Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians(Romania)[J]. Trees-Structure and Function. 2015, 29: 985-997. DOI: 10.1007/s00468-015-1178-3
[27] CONLISK E, CASTANHA C, GERMINO M J, et al. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming [J]. Journal of Ecology, 2017,105: 1347-1357. DOI: 10.1111/1365-2745.12750
[28] FRITTS H C. Tree rings and climate [M]. London: Academic Press,1976:77-82.
[29] SALZER M W, HUGHES M K, BUNN A G, et al. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(48): 20348-20353. DOI: 10.1073/pnas.0903029106
[30] PONOCNA T, SPYT B, KACZKA R, et al. Growth trends and climate responses of Norway spruce along elevational gradients in East-Central Europe [J]. Trees-Structure and Function, 2016, 30: 1633-1646. DOI: 10.1007/s00468-016-1396-3
[31] CONLISK E, CASTANHA C, GERMINO M J, et al. Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming [J]. Journal of Ecology. 2017, 105(5): 1347-1357. DOI: 10.1111/1365-2745.12750
[32] 石松林, 靳甜甜, 刘国华, 等. 气候变暖抑制西藏拉萨河大果圆柏树木生长[J]. 生态学报. 2018, 38(24): 8964-8972. [SHI Songlin, JIN Tiantian, LIU Guohua, et al. Climate warming decelerates growth of Sabina tibetica in Lhasa River area of Tibet [J]. Acta Ecologica Sinica, 2018, 38(24): 8964-8972] DOI: 10.5846 /stxb201807131522
[33] LIU Jingjing, QIN Chun, KANG Shuyuan. Growth response of Sabina tibetica to climate factors along an elevation gradient in south Tibet [J]. Dendrochronologia, 2013, 31(4): 255-265. DOI: 10.1016/j.dendro.2012.12.001
[34] LI Zongshan, LIU Guohua, FU Bojie, et al. The growth-ring variations of alpine shrub Rhododendron przewalskii reflect regional climate signals in the alpine environment of Miyaluo town in western Sichuan province, China [J]. Acta Ecologica Sinica, 2013, 33(1): 23-31. DOI: 10.1016/j.chnaes.2012.12.004
[35] FANG Ruizheng, MING Tianlu. The floristic study on the genus Rhododendron [J]. Acta Botanica Yunnanica, 1995, 17(4): 359-379.
[36] PETERS R L, GROENENDIJK P, VLAM M, et al. Detecting long-term growth trends using tree rings: A critical evaluation of methods [J]. Global Change Biology, 2015, 21: 2040-2054. DOI: 10.1111/gcb.12826
[37] WILLIAMS A P, ALLEN C D, MACALADY A K, et al. Temperature as a potent driver of regional forest drought stress and tree mortality [J]. Nature Climate Change, 2013, 3: 292-297. DOI: 10.1038/NCLIMATE1693
[38] HUGHES M K, SWETNAM T W, DIAZ H F. Dendroclimatology: Progress and prospects: Volume 11 [M]. Berlin: Springer, 2011:101-105. DOI: 10.1007/978-1-4020-5725-0
[39] JUMP A S, HUNT J M, PENUELAS J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica [J]. Global Change Biology, 2006, 12: 2163-2174. DOI: 10.1111/j.1365-2486.2006.01250.x
[40] WIGLEY T M L, BRIFFA K R, JONES P D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology [J]. Journal of Climate and Applied Meteorology, 1984, 23(2): 201-213.
[41] WANG Wenzhi, JIA Min, WANG Genxu, et al. Rapid warming forces contrasting growth trends of subalpine fir(Abies fabri)at higher- and lower-elevations in the eastern Tibetan Plateau [J]. Forest Ecology and Management, 2017, 402:135-144. DOI: 10.1016/j.foreco.2017.07.043
[42] ERIKSSON M. Book review of methods of dendrochronology: Applications in the environmental sciences edited by COOK E R and KAIRIUKSTIS L A [J]. Forest Science, 1991,37(2): 734-735. DOI: 10.1093/forestscience/37.2.734
[43] FRITTS H C, DEAN J S. Dendrochronological modeling of the effects of climatic change on tree-ring width chronologies from the Chaco Canyon area,southwestern United States [J]. Tree-Ring Bulletin, 1992, 52: 31-58.
[44] LIANG Eryuan, SHAO Xuemei, QIN Ningsheng, et al. Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau [J]. Global and Planetary Change, 2008, 61: 313-320. DOI: 10.1016/j.gloplacha.2007.10.008
[45] SHI C, MASSON-DELMOTTE V, DAUX V, et al. Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from Alpine treeline dendrochronology [J]. Climate Dynamic, 2015, 45: 1367-1380. DOI: 10.1007/s00382-014-2386-z
[46] KRONER Y, WAY D A. Carbon fluxes acclimate more strongly to elevated growth temperatures than to elevated CO2 concentrations in a northern conifer [J]. Global Change Biology, 2016, 22(8): 2913-2928. DOI: 10.1111/gcb.13215
[47] KÖRNER C. A re-assessment of high elevation treeline positions and their explanation [J]. Oecologia, 1998,115: 445-459. DOI: 10.1007/s004420050540
[48] PENG S, PIAO S, CIAIS P, et al. Asymmetric effects of daytime and night-time warming on northern Hemisphere vegetation [J]. Nature, 2013, 501: 88-92. DOI: 10.1038/nature12434
[49] SIDOR C G, POPA I, VLAD R, et al. Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians(Romania)[J]. Trees, 2015, 29: 985-997. DOI: 10.1007/s00468-015-1178-3
[50] 时兴合, 秦宁生, 朱海峰, 等. 青海杂多大果圆柏年轮指示的公元1360—2005年5—6月最高气温变化 [J]. 科学通报, 2010, 55(19): 1924-1931.[SHI Xinghe, QIN Ningsheng, ZHU Haifeng, et al. May-June mean maximum temperature change during 1360—2005 as reconstructed by tree of Sabina Tibetica in Zaduo, Qinghai province [J]. Chinese Science Bulletin, 2010, 55(19): 1924-1931] DOI: 10.1007/s11434-010-3237-x
[51] DUAN Jianping, ZHANG Qibin, LYU Lixin, et al. Regional-scale winter spring temperature variability and chilling damage dynamics over the past two centuries in southeastern China [J]. Climate Dynamics, 2012, 39: 919-928. DOI: 10.1007/s00382-011-1232-9
[52] ZHU H F, FANG X Q, SHAO X M, et al. Tree ring-based February-April temperature reconstruction for Changbai Mountain in northeast China and its implication for east Asian winter monsoon [J]. Climate of the Past, 2009,5: 661-666. DOI: 10.5194/ cp-5-661-2009
[53] TAKAHASHI K, TOKUMITSU Y, YASUE K, et al. Climatic factors affecting the tree-ring width of Betula ermanii at the timberline on Mount Norikura, central Japan [J]. Ecological Research, 2005, 20(4): 445-451. DOI: 10.1007/s11284-005-0060-y
[54] 吴普, 王丽丽, 邵雪梅. 采用高山松最大密度重建川西高原近百年夏季气温[J]. 地理学报, 2005, 60(6): 998-1006. [WU Pu, WANG Lily, SHAO Xuemei. Reconstruction of summer temperature from maximum latewood density of Pinus densata in west Sichuan [J]. Acta Geographica Sinica, 2005, 60(6): 998-1006]
[55] LIU Y, AN Z, LINDERHOLM H W, et al. Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings [J]. Science in China Series D: Earth Sciences, 2009, 52(3): 348-359. DOI: 10.1007/s11430-009-0025-z
[56] FRITTS H C. Tree rings and climate [M]. London: Academic Press, 1976: 376-412, 534.
[57] LIANG E Y, LEUSCHNER C, DULAMSUREN C, et al. Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau [J]. Climatic Change, 2016, 134:163-176.DOI: 10.1007/s10584-015-1531-y

相似文献/References:

[1]马华,王云琦,王力,等.近20a广西石漠化区植被覆盖度与气候变化和农村经济发展的耦合关系[J].山地学报,2014,(01):38.
 MA Hua,WANG Yunqi,WANG Li,et al.Vegetation Cover and Climate Change and Rural Economic Development in Relations during Last 20 Years in Karst Region of Guangxi,China[J].Mountain Research,2014,(5):38.
[2]刘军会,高吉喜,王文杰,等.青藏高原植被覆盖变化及其与气候变化的关系[J].山地学报,2013,(02):234.
 LIU Junhui,GAO Jixi,WANG Wenjie().Variations of Vegetation Coverage and Its Relations to Global Climate Changes on the Tibetan Plateau during 1981—2005[J].Mountain Research,2013,(5):234.
[3]刘伟龙,赵 慧,王小丹,等.气候变化下西藏高寒湿地生态系统研究的意义和特点[J].山地学报,2014,(04):481.
 LIU Weilong,ZHAO Hui,WANG Xiaodan,et al.Review and Evaluation of the Effect of the Climate Change on the High Altitude Wetland Ecosystem in Tibet Plateau[J].Mountain Research,2014,(5):481.
[4]姜永见,李世杰,沈德福,等.青藏高原江河源区近40年来气候变化特征及其对区域环境的影响[J].山地学报,2012,(04):461.
 JIANG Yongjian,LI Shijie,SHEN Defu,et al.Climate Change and Its Impact on the Regional Environment in the Source Regions of the Yangtze, Yellow and Lantsang Rivers in Qinghai-Tibetan Plateau during 1971—2008[J].Mountain Research,2012,(5):461.
[5]蓝永超,胡兴林,丁宏伟,等.气候变暖背景下祁连山西部山区水循环要素的变化——以疏勒河干流上游山区为例[J].山地学报,2012,(06):675.
 LAN Yongchao,HU Xinglin,DIN Hongwei,et al.Variation of Water Cycle Factors in the Western Qilian Mountain Area under Climate Warming——Taking the Mountain Watershed of the Main Stream of Shule River Basin for Example[J].Mountain Research,2012,(5):675.
[6]陈剑,崔之久,戴福初,等.金沙江奔子栏-达日河段大型泥石流堆积扇的成因机制[J].山地学报,2011,(03):312.
 CHEN Jian,CUI Zhijiu,Dai Fuchu,et al.Genetic Mechanism of the Major Debrisflow Deposits at BenzilanDari Segment, the Upper Jinsha River[J].Mountain Research,2011,(5):312.
[7]王晓东,刘惠清.长白山突变型林线岳桦对气候变化的响应[J].山地学报,2011,(05):551.
 WANG Xiaodong,LIU Huiqing.Climatic Response of Betula ermanii from Closed Treeline in Changbai Mountains[J].Mountain Research,2011,(5):551.
[8]熊尚发,刘东生,丁仲礼.南方红土的剖面风化特征[J].山地学报,2000,(01):7.
[9]刘文杰.西双版纳近40年气候变化对自然植被净第一性生产力的影响[J].山地学报,2000,(04):296.
[10]闫淑君,洪伟,吴承祯,等.福建近41年气候变化对自然植被净第一性生产力的影响[J].山地学报,2001,(06):522.

备注/Memo

备注/Memo:
收稿日期(Received date):2021-02-05; 改回日期(Accepted date): 2021-09-03
基金项目(Foundation item):国家重点研发计划项目(2016YFC0502105)。[National Key R&D Program of China(2016YFC0502105)]
作者简介(Biography):贾龙玉(1996-),男,四川巴中人,硕士研究生,主要研究方向:全球变化。[JIA Longyu(1996-),male,born in Bazhong, Sichuan province, M.Sc. candidate, research on global change] E-mail:jialongyu@stu.cdut.edu.cn
*通讯作者(Corresponding author):石松林(1986-),男,四川巴中人,博士,讲师,主要研究方向:全球变化。[SHI Songlin(1986-), male, born in Bazhong, Sichuan province,Ph.D., lecturer, research on global change] E-mail:shisonglin17@cdut.edu.cn
更新日期/Last Update: 2021-09-30