[1]胡至华,袁 路,马东涛*,等.基于EEMD分形和LS-SVM的次声信号识别泥石流类型[J].山地学报,2020,(4):619-629.[doi:10.16089/j.cnki.1008-2786.000539]
 HU Zhihua,YUAN Lu,MA Dongtao*,et al.Identification of Debris Flow Types by Infrasound Signals Based on EEMD Fractal and LS-SVM[J].Mountain Research,2020,(4):619-629.[doi:10.16089/j.cnki.1008-2786.000539]
点击复制

基于EEMD分形和LS-SVM的次声信号识别泥石流类型()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第4期
页码:
619-629
栏目:
山地技术
出版日期:
2020-09-27

文章信息/Info

Title:
Identification of Debris Flow Types by Infrasound Signals Based on EEMD Fractal and LS-SVM
文章编号:
1008-2786-(2020)4-619-11
作者:
胡至华12袁 路3马东涛1*胡雨豪4李 梅5
1.中国科学院、水利部成都山地灾害与环境研究所 中国科学院山地灾害与地表过程重点实验室,成都610041; 2.中国科学院大学,北京100049; 3.成都城投建设集团有限公司,成都610037; 4.中煤科工集团重庆设计研究院有限公司,重庆400016; 5.中国地质大学(北京),北京100083
Author(s):
HU Zhihua12 YUAN Lu3 MA Dongtao1* HU Yuhao4 LI Mei5
1. Institute of Mountain Hazards and Environment, CAS, Key Laboratory of Mountain Hazards and Earth Surface Process, CAS, Chengdu 610041, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Construction Investment and Management Co. Ltd., CDCI, Chengdu 610037, China; 4. CCTEG Chongqing Engineering Co. Ltd, Chongqing 400016, China; 5. China University Of Geosciences, Beijing 100083, China
关键词:
泥石流 类型 次声 EEMD分形 STFT LS-SVM
Keywords:
debris flow type infrasound the Ensemble Empirical Mode Decomposition(EEMD)fractal the Short-Time Fourier Transform(STFT) the Least Squares Support Vector Machines(LS-SVM)
分类号:
X43
DOI:
10.16089/j.cnki.1008-2786.000539
文献标志码:
A
摘要:
基于无接触的泥石流次声信号的有效波形特征提取识别不同类型的泥石流及预警泥石流规模、危害是国内外泥石流研究的新方向。本研究利用室内实验采集到的65次稀性、过渡性和粘性泥石流次声信号数据,采用集成经验模式分解(EEMD)对次声信号进行分解,提取本征模态函数(IMF)主分量,对比分析了原始信号和主分量信号STFT分布的时频特性差异,计算了主分量IMF盒维数值,并将其作为特征值输入最小二乘支持向量机(LS-SVM)分类器进行训练和分类,初步实现了基于次声分形特征指标识别泥石流类型。研究表明:(1)通过对EEMD重构的主IMF分量信号进行短时傅立叶变换(STFT)时频分析后,主分量信号具有优良的时频聚焦性能,提升了信号识别的准确性和精度;(2)稀性、过渡性和粘性泥石流的原始次声信号盒维数值分别为1.625、1.578和1.519,利用次声盒维数值可以识别泥石流的类型;(3)通过LS-LSVM模型训练测试,正确识别率达87%,其中稀性和过渡性泥石流为80%,粘性泥石流为100%。本研究利用次声特征指标无接触判识了泥石流类型,为次声自动识别、监测和预警泥石流灾害做了积极探索。
Abstract:
Infrasound signals produced by travelling debris flow are informative in recognizing debris flows. The waveform feature of the signals sampled by non-contact method can provide rich information in determining and pre-warning of debris flow types and magnitudes. In this study, by using signals collected at 65 debris flows with high and medium, as well as low viscosities, it extracted the principal components of the Intrinsic Mode Function(IMF)by the method of the Ensemble Empirical Mode Decomposition(EEMD), and compared the Short-Time Fourier Transform(STFT)distribution between the extracted signals and original signals. Then the box dimension of the principal components was input as eigenvalue in the Least Squares Support Vector Machines(LS-SVM)to train and classify the infrasound data for distinguishing debris flow types. It is found that:(1)The principal IMF component signal reconstructed by EEMD had excellent time-frequency focusing performance under STFT, which improved the accuracy and availability of signal recognition;(2)The original infrasound signals presented different fractal-box dimensions for debris flows with low, medium, and high viscosity, respectively of 1.625, 1.578 and 1.519. Through LS-SVM model training, the type recognition achieved accuracy of 87%. In conclusion, this research had realized the identification of debris flow types based on a non-contact infrasound signals and it will provide a novel way for monitoring and early warning of debris flow disasters.

参考文献/References:

[1] SCHIMMEL A, HüBL J, MCARDELL B W, et al. Automatic identification of alpine mass movements by a combination of seismic and infrasound sensors[J]. Sensors, 2018, 18(5): 1658.
[2] LIU D, LENG X, WEI F, et al. Visualized localization and tracking of debris flow movement based on infrasound monitoring[J]. Landslides, 2018, 15(5): 879-893.
[3] 袁路, 胡雨豪, 马东涛, 等. 泥石流性质和规模对声波特性影响的实验研究[J]. 山地学报, 2018, 36(6): 889-897. [YUAN Lu,HU Yuhao,MA Dongtao,et al. Influences of debris flow property and scale on acoustic wave characteristics by experiment[J].Mountain Research, 2018, 36(6): 889-897]
[4] 章书成. 泥石流研究述评[J]. 力学进展, 1989, 19(3): 365-375. [ZHANG Shucheng. A review on the research of debris flow[J]. Advances in Mechanics, 1989, 19(3): 365-375]
[5] 何德伟. 泥石流次声特性及在警报中的应用[D]. 北京:中国科学院大学, 2008: 35-45. [HE Dewei. Infrasonic characteristics of the debris flow and the application of the warning[D]. Beijing: University of Chinese Academy of Sciences, 2008: 35-45]
[6] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[7] WU Z, HUANG N E. Ensemble empirical mode decomposition:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[8] 朱权洁, 姜福兴, 尹永明, 等. 基于小波分形特征与模式识别的矿山微震波形识别研究[J]. 岩土工程学报, 2012, 34(11): 2036-2042. [ZHU Quanjie, JIANG Fuxing, YIN Yongming, et al. Classification of mine microseismic events based on wavelet-fractal method and pattern recognition[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2036-2042]
[9] 杨仁树, 付晓强, 张世平, 等. 基于EEMD分形与二次型SPWV分布的爆破振动信号分析[J]. 振动与冲击, 2016, 35(22): 41-47. [YANG Renshu, FU Xiaoqiang, ZHANG Shiping, et al. Analysis of blasting vibration signal based on EEMD fractal and quadratic time-frequency SPWV distribution[J]. Journal of Vibration and Shock, 2016, 35(22): 41-47]
[10] 康志成, 李焯芬, 马蔼乃, 等. 中国泥石流研究[M]. 北京: 科学出版社, 2004: 16-21. [KANG Zhicheng, LI Zhuofen, MA Ainai, et al. Research on debris flow in China[M]. Beijing: Science Press, 2004: 16-21]
[11] COUSSOT P, MEUNIER M. Recognition, classification and mechanical description of debris flows[J]. Earth-Science Reviews, 1996, 40(3/4):209-227.
[12] 邓冬梅, 梁烨, 王亮清, 等. 基于集合经验模态分解与支持向量机回归的位移预测方法:以三峡库区滑坡为例[J]. 岩土力学, 2017, 38(12): 3660-3669. [DENG Dongmei, LIANG Ye, WANG Liangqing, et al. Displacement prediction method based on ensemble empirical mode decomposition and support vector machine regression— a case of landslides in Three Gorges Reservoir area[J]. Rock and Soil Mechanics, 2017, 38(12): 3660-3669]
[13] 谢全民, 龙源, 钟明寿, 等. 小波与分形组合分析技术在爆破振动信号分析中的应用[J]. 振动与冲击, 2011, 30(12): 120-124. [XIE Quanmin, LONG Yuan, ZHONG Mingshou, et al. Wavelet and fractal portfolio technology in the application of blasting vibration signal analysis[J]. Journal of Vibration and Shock, 2011, 30(12): 120-124]
[14] 王济, 胡晓. MATLAB在振动信号处理中的应用[M]. 北京: 中国水利水电出版社, 2006:69-82. [WANG Ji, HU Xiao. The application of MATLAB in vibration signal processing[M]. Beijing: China Water & Power Press, 2006:69-82]
[15] 刘明贵, 岳向红, 杨永波, 等. 基于Sym小波和BP神经网络的基桩缺陷智能化识别[J]. 岩石力学与工程学报, 2007, 26(S1): 3484-3488. [LIU Minggui, YUE Xianghong, YANG Yongbo, et al. Intelligent identification of pile defect based on Sym wavelet and BP neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3484-3488]
[16] 何晓英, 陈洪凯, 唐红梅. 泥石流浆体与固体颗粒冲击信号能量分布研究[J]. 振动与冲击, 2016, 35(6): 64-69. [HE Xiaoying, CHEN Hongkai, TANG Hongmei. Experimental study on the energy distribution characteristics of debris flow impacting signals considering the slurry viscosity and particle[J]. Journal of Vibration and Shock, 2016, 35(6): 64-69]
[17] 朱凤杰, 焦瑞莉, 滕鹏晓. 适于泥石流除噪的EMD联合小波阈值除噪方法[J]. 声学技术, 2019, 38(1): 83-90. [ZHU Fengjie, JIAO Ruili, TENG Pengxiao. EMD decomposition and wavelet threshold denoising method for removing noise from debris flow signals[J]. Technical Acoustics, 2019, 38(1): 83-90]
[18] ZHU X, XU Q, ZHAO Z, et al. Low frequency acoustic signals associated with rock falls, thunderstorms, and wind turbulences in field environment[J]. Applied Acoustics, 2016, 112: 131-139.
[19] 宫宇新, 何满潮, 汪政红, 等. 岩石破坏声发射时频分析算法与瞬时频率前兆研究[J]. 岩石力学与工程学报, 2013, 32(4): 787-799. [GONG Yuxin, HE Manchao, WANG Zhenghong, et al. Research on time-frequency analysis algorithm and instantons frequency precursors for acoustics emission data form rock failure experiment[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 787-799]
[20] 胡雨豪, 袁路, 马东涛, 等. 泥石流次声警报研究进展[J]. 地球科学进展, 2018, 33(6): 606-613. [HU Yuhao, YUAN Lu,MA Dongtao, et al.Research progress on debris flow infrasound warning[J]. Advances in Earth Science, 2018, 33(6):606-613]
[21] 火元莲, 张广庶, 吕世华, 等. 闪电的分形特征研究及其在自动识别中的应用[J]. 物理学报, 2013, 62(5): 566-574. [HUO Yuanlian, ZHANG Guangshu, Lü Shihua, et al. Fractal characteristics research of lightning and its application to automatic recognition[J]. Acta Physica Sinica, 2013, 62(5): 566-574].
[22] VAPNIK V. The nature of statistical learning theory[M]. Germany: Springer, 1995: 138-145.
[23] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 230-293.

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(4):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(4):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(4):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(4):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(4):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(4):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(4):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(4):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(4):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(4):495.

备注/Memo

备注/Memo:
收稿日期(Received date):2020-01-01; 改回日期(Accepted date):2020-07-13
基金项目(Foundation item):国家自然科学基金项目(41572347)。[National Natural Science Foundation of China(41572347)]
作者简介(Biography):胡至华(1994-),男,四川绵阳人,硕士研究生,主要研究方向:山地灾害防治工程与预警预报。[HU Zhihua(1994-), male, born in Mianyang, Sichuan province., M. Sc. candidate, research on geohazards prevention and monitoring] E-mail: zhihua6971@163.com
*通讯作者(Corresponding author):马东涛(1965-),男,博士,副研究员,主要研究方向:地质灾害基础理论研究和防灾减灾工程实践。[MA Dongtao(1965-), male, Ph.D., associate professor, specialized in geohazards prevention theory and engineering] E-mail: dtma@imde.ac.cn
更新日期/Last Update: 2020-07-30