[1]潘志新,任 舫*.美国西部丹霞地貌特征及演化过程研究——以犹他州Zion国家公园为例[J].山地学报,2020,(2):210-221.[doi:10.16089/j.cnki.1008-2786.000503]
 PAN Zhixin,REN Fang*.Geomorphic Features and Evolution Process of Danxia Landforms in Western United States: A Case Study at Zion National Park, Utah[J].Mountain Research,2020,(2):210-221.[doi:10.16089/j.cnki.1008-2786.000503]
点击复制

美国西部丹霞地貌特征及演化过程研究——以犹他州Zion国家公园为例()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第2期
页码:
210-221
栏目:
山地环境
出版日期:
2020-05-10

文章信息/Info

Title:
Geomorphic Features and Evolution Process of Danxia Landforms in Western United States: A Case Study at Zion National Park, Utah
文章编号:
1008-2786-(2020)2-210-12
作者:
潘志新1任 舫2*
1. 海南大学 旅游学院, 海口 570228; 2. 中国地质科学院,北京 100037
Author(s):
PAN Zhixin1 REN Fang2*
1. School of Tourism, Hainan University, Haikou 570228, China; 2. Chinese Academy of Geological Sciences, Beijing 100037, China
关键词:
红层 丹霞地貌 地貌特征 演化过程 Zion国家公园
Keywords:
red beds Danxia landforms geomorphic features evolution process Zion National Park
分类号:
P931
DOI:
10.16089/j.cnki.1008-2786.000503
文献标志码:
A
摘要:
丹霞地貌是一种重要的风景地貌,研究其地貌特征和演化过程可以为保护与利用这一地质遗迹提供科学支持。中生代红层是我国丹霞地貌发育的物质基础,在美国西部的科罗拉多高原亦有大量分布。为增进国内同行对美国西部红层与丹霞地貌的了解,以犹他州Zion国家公园为例,通过实地考察,岩样理化性质测试,并结合GIS和DEM分析,对其地貌特征和演化过程进行探讨。结果表明:区域构造方面,Zion公园红层沉积于大型的弧后盆地——西部内陆盆地,盆地抬升时形成的节理群对丹霞地貌发育具有控制作用; 红层岩性方面,Zion公园发育丹霞地貌的红层以风沙沉积为主,岩性为细砂—粉砂岩,但不同段的风成砂岩在胶结特性和岩石强度上存在较大差异; 地貌特征方面,Zion公园整体为高原—深切峡谷景观,其中高程为1800~2000 m的部分占比最大,公园南部比北部切割侵蚀程度更高,形成的单体地貌以块状山崖—沟谷组合为主,同时还因地下水的基部渗流侵蚀和风蚀作用在崖壁上发育有各种洞穴景观; 演化过程方面,Zion公园丹霞地貌发育经历了构造盆地形成—红层堆积—地壳隆升—外力塑造四个阶段,三叠纪末期形成的西部内陆盆地为红层堆积提供了相对稳定的沉积环境,侏罗纪期间干旱的气候环境下形成了大规模的风沙沉积,白垩纪末期科罗拉多高原的抬升及形成的节理裂隙为外力侵蚀提供了条件。其中,强烈的流水下切是该地区丹霞地貌发育的主导外营力,并一直持续至今。
Abstract:
Danxia landforms is an important type of landscapes and research on their geomorphic features and evolutional processes can provide scientific support for the protection and utilization of this geoheritage. Mesozoic red beds are the material basis for the development of Danxia landforms in China, and they are also widely distributed on the Colorado Plateau of the Western United States. In order to enhance understanding on red beds and Danxia landforms in the Western United States, this study took Zion National Park in Utah as a case to discuss the geomorphic features and evolution process of Danxia landforms by field investigation and analysis of physical and chemical properties of rock samples, and analysis by the application of GIS and DEM. In terms of regional geological setting, the depositional environment for red beds deposited in Zion was a large back-arc basin—the Western Interior Basin, the development of Danxia landforms was controlled by closely-spaced joints developed when the basin was uplifted. In terms of lithologic features, red beds for the development of Danxia landforms in Zion are dominated by aeolian deposition, which are featured by fine-grained sandstones and siltstones, while coarse-grained clastic deposits such as conglomerates and sandy conglomerates are scarce in this area. In addition, the cementation characteristics and rock strength of these aeolian sandstones are varied in different rock members. In terms of geomorphic features, the overall landscape in Zion is a combination of plateau and deeply-incised valleys, with the elevation of 1800~2000 m accounts for the largest proportion, and the southern part has more down-cutting and erosion than the northern part. As for single Danxia landforms, they include sheer cliff walls, valleys, and various caves developed by sapping process of ground water and wind erosion. In terms of geomorphic evolution, the evolution processes of Danxia landforms in Zion could be divided into four stages: formation of structural basin—deposition of red beds—tectonic uplift—erosion of external forces. The Western Interior Basin formed in the late Triassic provided a relatively stable depositional environment for the deposition of red beds. Then, during the Jurassic period, a large scale of aeolian deposits was formed in arid climate. Finally, the uplift of the Colorado Plateau in late Cretaceous and the formation of joints provided conditions for erosion of external forces. Among them, the strong downcutting process was the dominant external force for the formation of Danxia landforms in this area, and it continued to this day.

参考文献/References:

[1] 彭华. 中国南方湿润区红层地貌及相关问题探讨[J]. 地理研究, 2011, 30(10): 1739-1752. [PENG Hua. Perspectives on the red beds landforms in humid area of southern China and some related Problems [J]. Geographical Research, 2011, 30(10): 1739-1752]
[2] 章桂芳, 陈凯伦, 张浩然, 等. 基于DEM的丹霞地貌演化阶段划分[J]. 中山大学学报(自然科学版), 2018, 57(2): 12-21. [ZHANG Guifang, CHEN Kailun, ZHANG Haoran, et al. The evolution stage decision of Danxia landform based on digital elevation model(DEM). ACTA Scientiarum Naturalium Universitatis Sunyatseni, 2018, 57(2): 12-21]
[3] 陈留勤, 李馨敏, 郭福生, 等. 丹霞山世界地质公园蜂窝状洞穴特征及成因分析[J]. 地质论评, 2018, 64(4): 121-130. [CHEN Liuqin, LI Xinmin, GUO Fusheng, et al. Characteristics and origin of honeycombs in the Danxiashan Global Geopark in South China[J]. Geological Review, 2018, 64(4): 121-130]
[4] 汪震, 姜勇彪. 江西宜黄盆地丹霞地貌特征分析[J]. 山地学报, 2019, 37(6): 839-847. [WANG Zhen, JIANG Yongbiao. Analysis of Danxia landform characteristics in the Yihuang Basin, Jiangxi Province, China[J]. Mountain Resarch, 2019, 37(6): 839-847]
[5] 潘志新, 彭华, 任舫, 等. 美国Zion国家公园红层地貌发育研究[J]. 地球学报, 2016, 37(1):116-126. [PAN Zhixin, PENG Hua, REN Fang, et al. A Study of the Development of Red Bed Landforms in Zion National Park, the United States[J]. Acta Geoscientica Sinica, 2016, 37(1):116-126]
[6] 潘志新, 任舫, 彭华. 美国西部红层地貌发育及与中国东南部丹霞地貌的对比[J]. 地理研究, 2018, 37(12): 2399-2410. [PAN Zhixin, REN Fang, PENG Hua. Development of red bed landform in the western United States and a comparison with Danxia landform in southeast China[J]. Geographical Research, 2018, 37(12): 2399-2410]
[7] 刘尚仁, 彭华. 国外若干丹霞地貌简介[J]. 经济地理, 2006, 26(增刊): 213-221 [LIU Shangren, Peng Hua. The information on Danxia landforms in foreign country[J]. Economic Geography, 2006, 26(suppl.): 213-221]
[8] 潘志新, 彭华. 国内外红层红层分布及其地貌发育的对比研究[J]. 地理科学, 2015, 35(12): 1575 -1584 [PAN Zhixin, PENG Hua. Comparative study on the global distribution and geomorphic development of red beds[J]. Scientia Geographica Sinica, 2015, 35(12): 1575-1584]
[9] EKSTRAND E J, BUTLER R F. Paleomagnetism of the Moenave Formation: Implications for the Mesozoic North American apparent polar wander path [J]. Geology, 1989, 17(3): 245-248.
[10] BAZARD D R, BUTLER R F. Paleomagnetism of the Chinle and Kayenta Formations, New Mexicoand Arizona [J]. Journal of Geophysical Research, 1991, 96(B6): 9847-9871.
[11] MOUNTNEY N P. Periodic accumulation and destruction of aeolian erg sequences in the Permian Cedar Mesa Sandstone, White Canyon, southern Utah, USA [J]. Sedimentology, 2006, 53(4): 789-823.
[12] KENNY, R. A cool time in the Early Jurassic: first continental paleoclimate estimates from oxygen and hydrogen isotope ratios in chert from Navajo Sandstone carbonate lenses, Utah(USA)[J]. Carbonates and Evaporites, 2017, 32(1): 45-52.
[13] MOORE J M, SCHULTZ R A. Processes of faulting in jointed rocks of Canyonlands National Park, Utah [J]. Geological Society of America Bulletin, 1999, 111(6): 808-822.
[14] KATZ Y, WEINBERGER R, AYDIN A. Geometry and kinematic evolution of Riedel shear structures, Capitol Reef National Park, Utah [J]. Journal of Structural Geology, 2004, 26(3): 491-501.
[15] NETOFF D I, SHROBA R R. Conical sandstone landforms cored with clastic pipes in Glen Canyon National Recreation Area, southeastern Utah [J]. Geomorphology, 2001, 39(3): 99-110.
[16] BEUMONT C, QUINLAN G M, STOCKMAL G S. The evolution of the Western Interior Basin:causes, consequences and unsolved problems [C]. Evolution of the Western Interior Basin: Geological Association of Canada Special Paper, 1993, 39: 97-117.
[17] SPENCER, J E. Uplift of the Colorado Plateau due to lithosphere attenuation during Laramide low-angle subduction [J]. Journal of Geophysical Research, 1996, 101(B6): 13595-13609.
[18] ROGER C M, MYERS D A, ENGELDER T. Kinematic implications of joint zones and isolated joints in the Navajo Sandstone at Zion National Park, Utah: Evidence for Cordilleran relaxation [J]. Tectonics, 2004, 23(1): 1-16.
[19] OLSEN H. Sandstone-body structures and ephemeral stream processes in the Dinosaur Canyon Member, Moenave Formation(Lower Jurassic), Utah, USA [J]. Sedimentary Geology, 1989, 61(3-4): 207-221.
[20] TANNER L H, LUCAS S G. The Moenave Formation: Sedimentologic and stratigraphic context of the Triassic–Jurassic boundary in the Four Corners area, southwestern USA [J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 244(1-4): 111-125.
[21] LUCAS S G, TANNER L H. The Springdale Member of the Kayenta Formation, Lower Jurassic of Utah-Arizona [J]. New Mexico Museum of Natural History Bulletin, 2006, 37: 71-76.
[22] BIEK R F, WILLIS G C, HYLLAND M D, et al. Geology of Zion National Park, Utah [A]. In Sprinkel D A, Chidsey T C, Anderson P B(eds.). Geology of Utah's parks and Monuments [C]. Utah Geological Association Publication, 2000, 28: 107-138.
[23] WOLF M B, SALEEBY J B. Jurassic Cordilleran dike swarm-shear zones: Implications for the Nevadan orogeny and North American plate motion [J]. Geology, 1992, 20(8): 745-748.
[24] VERLANDER J E. The Navajo Sandstone [J]. Geology Today, 1995, 11(4): 143-146.
[25] GRAHAM J. Zion National Park Geologic Resource Evaluation Report[R]. Natural Resource Report, National Park Service, Denver, Colorado, 2006, 27-31.
[26] BEITLER B, CHAN M A, PARRY W T. Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide highs: Evidence of exhumed hydrocarbon supergiants? [J]. Geology, 2003, 31(12): 1041-1044.
[27] UYGUR K, PICARD M D. Reservoir characteristics of Jurassic Navajo Sandstone, southern Utah [A]. In: Picard M D(eds.). Henry Mountain symposium [C]. Utah Geological Association Publication. 1980, 8: 277-286.
[28] SURDAM R C, JIAO Z S, MACGOWAN D B. Redox reactions involving hydrocarbons and mineral oxidants: A mechanism for significant porosity enhancement in sandstones [J]. American Association of Petroleum Geologists Bulletin, 1993, 77(9): 1509-1518.
[29] LOOPE D B, MASON J A. Wind erosion of the wind-deposited Navajo Sandstone, USA [J]. Geology Today, 2009, 25(2): 65-70.
[30] SCHWEICKERT R A, BOGEN N L, GIRTY G H et al. Timing and structural expression of the Nevadan orogeny, Sierra Nevada, California[J]. Geological Society of America Bulletin, 1984, 95(8):967-979.
[31] HELLER P L, BOWDLER S S, CHAMBERS H P, et al. Time of initial thrusting in the Sevier orogenic belt, Idaho-Wyoming and Utah [J]. Geology, 1986, 14(5): 388-391.
[32] WRIGHT E K. Stratification and paleocirculation of the Late Cretaceous Western Interior Seaway of North America [J]. Geological Society of America Bulletin, 1987, 99(4): 480-490.
[33] ENGLISH J M, JOHNSTON S T. The Laramide Orogeny: what were the driving forces? [J].International Geology Review, 2004, 46(9): 833-838.

相似文献/References:

[1]刘 丹,等.江西南城醉仙湖河口组地层沉积特征及景观成因分析[J].山地学报,2018,(02):239.[doi:10.16089/j.cnki.1008-2786.000319]
 LIU Dan,LUO Yong,et al.Strata Sedimentary Characteristics and Landscape Genetic Analysis of the Hekou Formation at the Zuixian Lake, Nancheng, Jiangxi Province, China[J].Mountain Research,2018,(2):239.[doi:10.16089/j.cnki.1008-2786.000319]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-11-08; 改回日期(Accepted date)2020-04-09
基金项目(Foundation item):国家自然科学基金项目(41761002)。[National Natural Science Foundation of China(41761002)]
作者简介(Biography):潘志新(1986-),男,江西婺源人,博士,讲师,主要研究方向:红层与丹霞地貌研究。[PAN Zhixin(1986-), male, born in Wuyuan, Jiangxi province, Ph. D., lecture, research on red beds and Danxia landform] E-mail: panzhix@mail2.sysu.edu.cn
*通讯作者(Corresponding author):任舫(1983-),女,江西玉山人,博士,助理研究员,主要研究方向:红层与丹霞地貌研究。[ REN Fang(1983-), female, born in Yushan, Jiangxi province, Ph.D., assistant researcher, research on red beds and Danxia landform] E-mail: fren2014@hotmail.com
更新日期/Last Update: 2020-03-30