[1]陆 文,唐家良*,章熙锋,等.山地流域水文模拟研究进展与展望[J].山地学报,2020,(1):50-61.[doi:10.16089/j.cnki.1008-2786.000490]
 LU Wen,TANG Jialiang*,ZHANG Xifeng,et al.Hydrological Simulation in Mountainous Region: Present State and Perspectives[J].Mountain Research,2020,(1):50-61.[doi:10.16089/j.cnki.1008-2786.000490]
点击复制

山地流域水文模拟研究进展与展望()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第1期
页码:
50-61
栏目:
山地环境
出版日期:
2020-02-01

文章信息/Info

Title:
Hydrological Simulation in Mountainous Region: Present State and Perspectives
文章编号:
1008-2786-(2020)1-050-12
作者:
陆 文12唐家良1* 章熙锋1 刘皓雯12罗专溪3
1.中国科学院、水利部成都山地灾害与环境研究所,成都 610041; 2.中国科学院大学,北京 100049; 3.中国科学院城市环境研究所,福建 厦门 361021
Author(s):
LU Wen12TANG Jialiang1* ZHANG Xifeng1 LIU Haowen12LUO Zhuanxi3
1. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences, Chengdu 610041, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian China
关键词:
水文模拟 山地 水循环 分布式模型 水文参数
Keywords:
hydrological modeling mountainous area water cycle distributed model hydrological parameters
分类号:
P334+.92
DOI:
10.16089/j.cnki.1008-2786.000490
文献标志码:
A
摘要:
山地水文循环是全球水循环的重要组成部分,山地独特的地形特征、日趋变化的社会经济与新技术(遥感观测和信息科学)发展使得山地水文循环研究成为当前乃至未来水文学关注的热点。山地较大的垂直梯度浓缩了水平自然带的自然地理和生态学特征,具有多样的环境敏感性,因此山地水文过程对土地利用变化和气候变化的响应比平坦地区更为剧烈。明晰山地水文过程对区域防洪减灾、制定全球变化背景下区域水资源可持续利用策略、促进经济社会发展具有重要意义。水文模型是研究水循环的重要工具,但山地产汇流机制的复杂性以及实测水文资料匮乏等一系列问题极大限制了山地水文模拟与预测工作。本文首先系统地从数据获取、参数计算、模型结构、建模理论四个方面介绍了国内外山地水文模拟的研究进展,并总结了经验模型、概念模型及基于物理机制的分布式水文模型在我国山地水文模拟中的应用进展,之后从山地水文要素的空间变异性与垂直变异性、驱动力、数据不确定性、强烈的人为扰动等方面对当前山地水文模拟中面临的挑战与难点进行了论述。通过对国内外相关研究前沿的归纳,从多过程耦合机理研究、山地自然—社会二元水循环理论、大数据背景下多源数据获取与同化研究等方面对我国未来山地水文模拟的工作方向进行了展望。
Abstract:
Water cycle in mountainous region is an essential component of the global water cycles. However unique topography, ever-changing socio-economy and variable environmental gradients make a unique situation and diverse hydrological conditions in these regions. The emergence of modern technologies, such as Remote Sensing and Information Technology have made large scale hydrological studies possible in the mountainous ecosystem and opened up a new horizon for hydrological research in mountains for both current and future researchers all across the globe. Large vertical gradient in mountainous region condenses the natural geographical and ecological characteristics at the horizontal scale and these regions have a variety of environmental sensitivities. Therefore, the responses of hydrological processes due to land use change and climate variability in the mountainous areas are more dramatic than those in the plains. On the other hand, flood control, disaster management, and sustainability assessment of regional water resources are also required to understand the hydrological processes in the mountainous areas due to global climate change. Hydrological models have been proved as the important tools for water cycle researches for decades. With the launch of the PUB program and the application of new observation methods in the past 20 years, hydrological simulations have made a great progress. However, a series of problems such as the complexity of runoff generation and concentration, lack of measured hydrological data still prevent successful hydrological modelling in the mountainous regions. This review systematically introduced the research progress of hydrological modelling in the mountainous regions from four basic aspects:(i)data acquisition,(ii)parameter estimation,(iii)model structure, and(iv)modelling theory. Then, the domestic applications of empirical, conceptual, and distributed hydrological models were reviewed. Moreover, the challenges and difficulties in the current hydrological simulation were discussed for the heterogeneity of hydrological elements, driving force, data uncertainty and intensive human disturbances in the mountainous regions. It is concluded that multi-process coupling, multi-source data acquisition, and assimilation in the context of big data, nature-society dualistic water cycle modeling could foster the future development of hydrological modelling in mountainous regions.

参考文献/References:

[1] 王根绪,邓伟,杨艳,等. 山地生态学的研究进展、重点领域与趋势[J]. 山地学报,2011,29(2):129-140.[WANG Genxu,DENG Wei,YANG Yan,et al. The advances priority and developing trend of alpine ecology [J]. Mountain Research,2011,29(2):129-140]
[2] MARTIN L B,LEISTER I,CRUZ P L,et al. Nature's contributions to people in mountains:a review [J]. Plos One,2019,14(6):1-24.
[3] HOCK R. Glacier melt:a review of processes and their modelling [J]. Progress in Physical Geography,2005,29(3):362-391.
[4] JONES D B,HARRISON S,ANDERSON K,et al. Rock glaciers and mountain hydrology: a review [J]. Earth-Science Reviews,2019,193:66-90.
[5] 徐宗学. 水文模型:回顾与展望 [J]. 北京师范大学学报(自然科学版), 2010(3):278-289.[XU Zongxue. Hydrological models:past, present and future [J]. Journal of Beijing Normal University(Natural Science),2010(3): 278-289]
[6] CUI Xintong,GUO Xiaoyu,WANG Yidi, et al. Application of remote sensing to water environmental processes under a changing climate [J]. Journal of Hydrology,2019,574:892-902.
[7] ZHANG Yueyuan, LI Yungang, JI Xuan, et al. Fine-Resolution precipitation mapping in a mountainous watershed:geostatistical downscaling of TRMM products based on environmental variables [J]. Remote Sensing, 2018,10(1):1-27.
[8] ZHAN Chesheng,HAN Jian,HU Shi, et al. Spatial downscaling of GPM annual and monthly precipitation using regression-based algorithms in a mountainous area [J]. Advances in Meteorology,2018,1-13.
[9] CREUTIN J D,BORGA M. Radar hydrology modifies the monitoring of flash-flood hazard [J]. Hydrological Processes,2003,17(7):1453-1456.
[10] JONES K L,POOLE G C,O'DANIEL S J,et al. Surface hydrology of low-relief landscapes:assessing surface water flow impedance using LIDAR-derived digital elevation models [J]. Remote Sensing of Environment,2008,112(11):4148-4158.
[11] 李铁键, 李家叶,史海匀,等. 基于智能手机互动的资料缺乏山区洪水预警系统 [J]. 四川大学学报(工程科学版),2013(1):23-27. [LI Tiejian,LI Jiaye,SHI Haiyun,et al. A smartphone-based interactive flood warning system for ungauged mountainous regions [J]. Journal of Sichuan University(Engineering Science Edition),2013(1):23-27]
[12] JIANG Shijie,Babovic V,Zheng Yi,et al. Advancing opportunistic sensing in hydrology:a novel approach to measuring rainfall with ordinary surveillance cameras [J]. Water Resourse Research,2019,55(4):3004-3027.
[13] PARAJKA J,MERZ R,BLOSCHL G. A comparison of regionalisation methods for catchment model parameters [J]. Hydrology and Earth System Sciences,2005,9(3):157-171.
[14] OUDIN L,KAY A,ANDREASSIAN V,et al. Are seemingly physically similar catchments truly hydrologically similar [J] Water Resources Research,2010,46:1-15.
[15] OUDIN L,ANDREASSIAN V,PERRIN C,et al. Spatial proximity, physical similarity,regression and ungaged catchments:a comparison of regionalization approaches based on 913 French catchments [J]. Water Resourses Research,2008,44(3):1-15.
[16] ZHANG Yongqiang,CHIEW FHS. Relative merits of different methods for runoff predictions in ungauged catchments [J]. Water Resourses Research, 2009,45:1-13.
[17] SINGH R,ARCHFIELD SA,WAGENER T. Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments - a comparative hydrology approach [J]. Journal of Hydrology,2014,517:985-996.
[18] 刘苏峡,刘昌明,赵卫民. 无测站流域水文预测(PUB)的研究方法 [J]. 地理科学进展,2010(11):1333-1339. [LIU Suxia,LIU Changming,ZHAO Weiming. Towards the methodology for predictions in Ungauged Basins [J]. Progress In Geography,2010(11):1333-1339]
[19] MOGES E,DEMISSIE Y,LI H Y. Hierarchical mixture of experts and diagnostic modeling approach to reduce hydrologic model structural uncertainty [J]. Water Resources Research,2016,52(4):2551-2570.
[20] SHIN M J,GUILLAUME J H A,CROKE B F W,et al. A review of foundational methods for checking the structural identifiability of models: results for rainfall-runoff [J]. Journal of Hydrology,2015,520: 1-16.
[21] LEAVESLEY G H,MARKSTROM S L,BREWER M S,et al. The modular modeling system(MMS)- The physical process modeling component of a database-centered decision support system for water and power management [J]. Water Air and Soil Pollution,1996,90(1-2):303-311.
[22] HUBLART P,RUELLAND D,DEZETTER A,et al. Reducing structural uncertainty in conceptual hydrological modelling in the semi-arid Andes [J]. Hydrology and Earth System Sciences,2015,19(5):2295-2314.
[23] 龚伟,杨大文. 水文变量高维非线性相关分析与水文模型结构不确定性评估 [J]. 水力发电学报,2013,32(5):13-20. [GONG Wei,YANG Dawen. High-dimensional nonlinear correlation analysis of hydrological variables and model structure uncertainty qualification [J]. Journal of Hydroelectric Engineering,2013,32(5):13-20]
[24] HORAK J,ORLIK A,STROMSKY J. Web services for distributed and interoperable hydro-information systems [J]. Hydrology and Earth System Sciences,2008,12(2):635-644.
[25] CASTRONOVA A M, GOODALL J L, ELAG M M. Models as web services using the Open Geospatial Consortium(OGC)Web Processing Service(WPS)standard [J]. Environmental Modelling & Software,2013,41:72-83.
[26] 李致家,姚成,张珂,等. 基于网格的精细化降雨径流水文模型及其在洪水预报中的应用 [J].河海大学学报(自然科学版),2017,45(6):471-480.[LI Zhijia,YAO Cheng,ZHANG ke,et al. Research and application of the high-resolution rainfall runoff hydrological model in flood forecasting [J]. Journal of Hohai University(Natural Sciences),2017,45(6):471-480]
[27] JAKEMAN A J,LETCHER R A. Integrated assessment and modelling: features,principles and examples for catchment management [J]. Environmental Modelling & Software,2003,18(6):491-501.
[28] SIVAPALAN M,SAVENIJE H H G,BLOSCHL G. Socio-hydrology:A new science of people and water[J]. Hydrological Processes,2012,26(8):1270-1276.
[29] 王浩,王建华,秦大庸,等. 基于二元水循环模式的水资源评价理论方法[J]. 水利学报,2006(12):1496-1502.[WANG Hao, WANG Jianhua, QIN Dayong,et al. Theory and methodology of water resources assessment based on dualistic water cycle model [J]. Journal of Hydraulic Engineering,2006(12):1496-1502]
[30] 高前兆,仵彦卿. 河西内陆河流域的水循环分析 [J]. 水科学进展,2004(3):391-396.[GAO Qianzhan,WU Yanqing. Analysis of water cycle in inland river basins in Hexi Region [J]. Advances in Water Science,2004(3):391-396]
[31] El Sawah S,Kelly R A,Beverly C,et al. An integrated model to examine the effects of Sustainable Diversion Limits:A case study in the Lower Campaspe catchment. Piantadosi J, Anderssen RS, Boland J, editors. Christchurch: Modelling & Simulation Soc Australia & New Zealand Inc., 2013, 2131-2137.
[32] 张军民. 干旱区内陆河水文循环二元分化生态效应研究——以新疆玛纳斯河为例 [J]. 水利经济,2006 24(6):20-22.[ZHANG Junmin. Studies on the ecologic result of hydrology two dimension division in arid area:Case studies of Manas River basin in Xingjiang [J]. Journal of Economics of Water Resources,2006 24(6):20-22]
[33] ELSHAFEI Y,TONTS M,SIVAPALAN M, et al. Sensitivity of emergent sociohydrologic dynamics to internal system properties and external sociopolitical factors:implications for water management [J]. Water Resources Research,2016,52(6):4944-4966.
[34] 刘德地,陈晓宏,刘丙军. 面向可持续发展的佛山市水资源优化配置 [J]. 水资源保护,2008(6):23-27.[LIU Dedi,CHEN Xiaohong,LIU Bingjun. Optimal allocation of water resources in southern humid area for sustainable development:a case study in Foshan City of Guangdong Province [J]. Water Resources Protection,2008(6):23-27]
[35] MONTANARI A,YOUNG G,SAVENIJE HHG,et al. “Panta Rhei-Everything Flows”:Change in hydrology and society-the IAHS Scientific Decade 2013-2022 [J]. Hydrological Sciences Journal, 2013,58(6):1256-1275.
[36] BEVEN K. How to make advances in hydrological modelling [J]. Hydrology Research,2019,50(6):1481-1494.
[37] 耿兵,张行南,夏达忠,等. 传统单位线和地貌瞬时单位线在腰古流域的对比研究 [J]. 水力发电,2016,42(5):12-15. [GENG Bing,ZHANG Xingnan,XIA Dazhong,et al. Comparative research on traditional UH and R-V GIUH in Yaogu basin [J].Water Power,42(5):12-15]
[38] 王海青. 基于人工神经网络模型的黑河流域径流模拟预报 [D]. 兰州:西北师范大学,2008:7-8. [WANG Haiqing. The simulation and predication of runoff in Heihe river basin based on the artificial neural network [D]. LanZhou: Northwest Normal University,2008:7-8]
[39] 宋强. Kalman滤波在黄河上游融雪期径流预报中的应用初探 [J]. 冰川冻土,1991(1):27-34. [SONG Qiang. Research on using Kalman filter in snowmelt runoff in the upper reaches of Yellow River [J]. Journal of Glaciology And Geocryology,1991(1):27-34]
[40] 刘芳. 基于小波分析和相关向量机的非线性径流预报模型研究[D]. 武汉:华中科技大学,2007:102-103. [LIU Fang. Research on the nonlinear streamflow forecast models using wavelet analysis and relevance vector machine[D]. WuHan: Huazhong University of Science & Technology, 2007:102-103]
[41] 程扬,王伟,王晓青.水文时间序列预测模型研究进展 [J]. 人民珠江,2019,40(7):18-23. [CHENG Yang,WANG Wei,WANG Xiaoqing. Research progress on hydrological time series prediction model [J]. Pearl River,2019,40(7):18-23]
[42] 夏军,王慧筠,甘瑶瑶,等. 中国暴雨洪涝预报方法的研究进展 [J].暴雨灾害,2019,38(5):416-421.[XIA Jun,WANG Huiyun,GAN Yao,et al. Research progress in forecasting methods of rainstorm and flood disaster in China[J]. Torrential Rain and Disasters,2019,38(5):416-421]
[43] 何应平,卢琼. 萨克拉门托流域水文模型在海滦河流域山区地表水和地下水蓄泄关系研究中的应用 [J]. 水利水电技术,1987(5):1-8. [HE Yingping, LU Qiong. Application of the sacramento model to the study of the relationship between surface water and groundwater storage and discharge in the Luan River basin [J]. Water Resources and Hydropower Engineering,1987(5): 1-8]
[44] 陈正维,刘兴年,朱波. 基于SCS-CN模型的紫色土坡地径流预测 [J]. 农业工程学报,2014(7):72-81. [CHEN Zhengwei, LIU Xingnian, ZHU Bo. Runoff estimation in hillslope cropland of purple soil based on SCS-CN model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014(7): 72-81]
[45] 钟小燕,文磊,余钟波. 连续API模型在沂河临沂站径流预报中的应用 [J]. 人民长江,2017,48(13):26-30. [ZHONG Xiaoyan, WEN Lei, YU Zhongbo. Application of continuous API hydrological model at Linyi Hydrological station of Yihe River [J]. Yangtze River,2017,48(13):26-30]
[46] 康尔泗,程国栋,蓝永超,等. 西北干旱区内陆河流域出山径流变化趋势对气候变化响应模型 [J]. 中国科学(D辑:地球科学),1999(S1):47-54.[KANG Ersi,CHENG Guodong,LAN Yongchao,et al. Climate change response model of the trend of mountain runoff in the inland river basin in the arid area of Northwest China [J]. Science In China(Series D),1999(S1):47-54]
[47] 许慧萍. 考虑季节性冻土的黄河源区流域水文TANK模型 [D]. 北京:中国地质大学(北京),2009:27-31. [XU Huiping. Tank model with migration of seasonal frozen soil In the original area of Yellow river [D]. Beijing:China University of Geosciences(Beijing),2009:27-31]
[48] 白晓燕,丁华龙,陈晓宏. 基于HSPF模型的东江流域土地利用变化对径流影响研究 [J]. 灌溉排水学报,2014,33(2):58-63. [BAI Xiaoyan, DING Hualong, CHEN Xiaohong. Using the HSPF model to study the effects of precipitation on Nonpoint Source Pollution in Dongjiang Basin [J]. Journal of Irrigation and Drainage,2014,33(2):58-63]
[49] 索立涛,万军伟,卢学伟. TOPMODEL模型在岩溶地区的改进与应用 [J]. 中国岩溶,2007(1):67-70.[SUO Litao,WAN Junwei,LU Xuewei. Improvement and application of TOPMODEL in karst region [J]. Carsologica Sinica,2007(1):67-70]
[50] LIU Dengfeng,TIAN Fuqiang,LIN Mu,et al. A conceptual socio-hydrological model of the co-evolution of humans and water: case study of the Tarim River basin, western China [J]. Hydrology and Earth System Sciences. 2015,19(2):1035-1054.
[51] 桑学锋,王浩,王建华,等. 水资源综合模拟与调配模型WAS(Ⅰ):模型原理与构建 [J]. 水利学报,2018,49(12):1451-1459.[SANG Xuefeng, WANG Hao,WANG Jianhua,et al. Water Resources Comprehensive Allocation and Simulation Model(WAS),part Ⅰ.Theory and development [J]. Journal of Hydraulic Engineering,2018,49(12):1451-1459.
[52] 王中根,刘昌明,黄友波. SWAT模型的原理、结构及应用研究 [J]. 地理科学进展,2003(1):79-86. [WANG Zhonggen, LIU Changming, HUANG Youbo. The theory of SWAT model and its application in Heihe basin [J]. Progress In Geography,2003,(1):79-86]
[53] 黄清华,张万昌. SWAT分布式水文模型在黑河干流山区流域的改进及应用 [J]. 南京林业大学学报(自然科学版),2004(2):22-26. [HUANG Qinghua,ZHANG Wanchang. Improvement and application of GIS-based distributed SWAT hydrological modeling on high altitude,cold,semi-arid catchment of Heihe River basin,China [J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2004(2):22-26]
[54] 赖正清,李硕,李呈罡,等. SWAT模型在黑河中上游流域的改进与应用 [J]. 自然资源学报,2013(8):1404-1413. [LAI Zhengqing,LI Shuo,LI Chenggang,et al. Improvement and applications of SWAT model in the upper-middle Heihe River basin [J]. Journal of Natural Resources,2013(8):1404-1413]
[55] 余文君,南卓铜,李硕,等. 黑河山区流域平均坡长的计算与径流模拟[J]. 地球信息科学学报,2012(1): 41-48. [YU Wenjun,NAN Zhuotong,LI Shuo,et al. Average slope length calculation and runoff simulation[J]. Journal of Geo-Information Science,2012(1):41-48]
[56] 高瑞,穆振侠. 天山西部山区VIC模型的应用 [J]. 南水北调与水利科技, 2017(4):44-48. [GAO Rui,MU Zhenxia. Application of VIC model in western Tianshan Mountains [J]. South-to-North Water Transfers and Water Science & Technology,2017(4):44-48]
[57] 康丽莉,王守荣,顾骏强. 分布式水文模型DHSVM对兰江流域径流变化的模拟试验 [J]. 热带气象学报, 2008(2): 176-182. [KANG Lili, WANG Shourong,GU Junqiang. The simulation test of the distributed hydrological model DHSVM on the runoff change of Lanjiang River basin[J]. Journal of Tropical Meteorology,2008(2):176-182]
[58] 夏军,王纲胜,吕爱锋,等. 分布式时变增益流域水循环模拟 [J]. 地理学报,2003(5):789-796. [XIA Jun,WANG Gangsheng,LV Aifeng,et al. A research on distributed time variant gain model [J]. Acta Geographica Sinica,2003(5):789-796]
[59] 阮宏威,邹松兵,陆志翔,等. 耦合SWAT与RIEMS模拟黑河干流山区径流 [J]. 冰川冻土,2017(2):384-394. [RUAN Hongwei,ZOU Songbing, LU Zhixiang,et al. Coupling SWAT and RIEMS to simulate mountainous runoff in the upper reaches of the Heihe river basin [J]. Journal of Glaciology And Geocryology,2017(2):384-394]
[60] MENG Xianyong,SUN Zhiqun,ZHAO Honggang,et al. Spring flood forecasting based on the WRF-TSRM mode [J]. Tehnicki Vjesnik-Technical Gazette,2018,25(1):141-151.
[61] 张淑兰,于澎涛,张海军,等. 泾河流域上游土石山区和黄土区森林覆盖率变化的水文影响模拟 [J]. 生态学报,2015(4):1068-1078. [ZHANG Shulan,YU Pengtao,ZHANG H J,et al. A simulation study on the hydrological impacts of varying forest cover in the stony mountain area and loess area of the upper reaches of Jinghe Basin [J]. Acta Ecologica Sinica,2015(4):1068-1078]
[62] WANG Yuhan,YANG Hanbo,GAO Bing,et al. Frozen ground degradation may reduce future runoff in the headwaters of an inland river on the northeastern Tibetan Plateau [J]. Journal of Hydrology,2018,564:1153-1164.
[63] WU Feng,ZHAN Jinyan,Guneralp I. Present and future of urban water balance in the rapidly urbanizing Heihe River Basin,Northwest China [J].Ecological Modelling. 2015,318:254-264.
[64] 桑学锋,秦大庸,周祖昊,等. 基于广义ET的水资源与水环境综合规划研究Ⅲ:应用 [J]. 水利学报,2009,40(12):1409-1415.[SANG Xuefeng, QIN Dayong,ZHOU Zuhao,et al. Comprehensive water resources and environment planning based on generalized evaporation-transpiration water consumption control Ⅲ:application [J]. Journal of Hydraulic Engineering, 2009,40(12):1409-1415]
[65] 贾仰文,王浩,周祖昊,等. 海河流域二元水循环模型开发及其应用——Ⅰ.模型开发与验证 [J]. 水科学进展,2010,21(1):1-8.[JIA Yangwen,WANG Hao,ZHOU Zuhao,et al. Development and application of dualistic water cycle model in Haihe River Basin:I. Model development and validation [J]. Advances in Water Science,2010,21(1):1-8]
[66] 易路. 陆面水文模型TOPX的改进及其与区域气候模式WRF的耦合研究 [D]. 南京:南京大学,2018:15-16.[YI Lu. Improvement of Land-surface Hydrological Model TOPX and its Coupling with Regional Climate Model WRF [D]. Nanjing:Nanjing University,2018:15-16]
[67] LIANG Xu,XIE Zhenghui. A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models [J]. Advances in Water Resources,2001,24(9-10):1173-1193.
[68] 张中彬,彭新华. 土壤裂隙及其优先流研究进展 [J]. 土壤学报,2015,52(3):477-488.[ZHANG Zhongbin, PENG Xinhua. A review of researches on soil cracks and their impacts on preferential flow [J]. Acta pedologica sinica,2015,52(3):477-488]
[69] 朱磊,尤今,陈玖泓. 裂隙网络对坡面流及土壤水分入渗影响 [J]. 灌溉排水学报,2017,36(12):95-100.[ZHU Lei,YOU Jin,Chen Jiuhong. Preferential flow model coupling soil matrix with fracture network and its validation [J]. Transactions of the Chinese Society of Agricultural Engineering,2017,36(12):95-100]
[70] 杨振华,宋小庆. 西南喀斯特地区坡地产流过程及其利用技术 [J]. 地球科学,2019,44(9):2931-2943.[YANG Zhenhua,SONG Xiaoqing. Slope runoff process and its utilization technology in southwest Karst area [J]. Earth Science,2019,44(9):2931-2943]
[71] 刘欢. 考虑产流机制空间差异的全国尺度分布式水文模型构建及应用 [D]. 北京:中国水利水电科学研究院,2019:17-18.[LIU Huan. Development and application of distributed hydrological model at the China national scale considering the spatial difference of runoff generation mechanisms [D]. China Institute of Water Resources and Hydropower Research,2019:17-18]
[72] 杜军凯. 考虑垂直地带性的山区分布式水文模拟与应用 [D]. 北京:中国水利水电科学研究院,2019:1-2.[DU Junkai. Distributed hydrological simulation and application in mountainous areas considering vertical zonality [D]. Beijing:China Institute of Water Resources and Hydropower Research,2019:1-2]
[73] SEVRUK B. Regional dependency of precipitation-altitude relationship in the Swiss Alps [J]. Climatic Change,1997,36(3-4):355-369
[74] 郭志强,彭道黎,徐明,等. 季节性冻融土壤水热耦合运移模拟 [J]. 土壤学报,2014,51(4):816-823.[GUO Zhiqing,PENG Daoli,XU Ming,et al. Simulation of coupling transmission of water and heat in soil under seasonal freezing and thawing [J]. Acta Pedologica Sinica,2014,51(4):816-823]
[75] GRIESSINGER N,SCHIRMER M,HELBIG N,et al. Implications of observation-enhanced energy-balance snowmelt simulations for runoff modeling of Alpine catchments [J]. Advances in Water Resources, 2019,133:1-12.
[76] 刘少华. 怒江上游流域水循环演变规律及其对气候变化的响应 [D]. 北京: 中国水利水电科学研究院,2017:11-13.[LIU Shaohua. Water cycle evolution and its response to climatechange in the upper reaches of Nujiang River basin [D]. Beijing:China Institute of Water Resources and Hydropower Research,2017:11-13]
[77] 冉洪伍,范继辉,黄菁. 冻融过程土壤水热力耦合作用及其模型研究进展 [J]. 草业科学, 2019,36(4):991-999.[RAN Hongwu, FAN Jihui,HUANG Jing. Review of the coupling of water and heat in the freeze-thaw process and its model of frozen soil [J]. Pratacultural Science,2019,36(4):991-999]
[78] SADEGHI S H R,SEGHALEH M B,Rangavar A S. Plot sizes dependency of runoff and sediment yield estimates from a small watershed [J]. Catena,2013,102:55-61.
[79] WILSON G V,RIGBY J R, Ursic M, et al. Soil pipe flow tracer experiments:1. Connectivity and transport characteristics [J]. Hydrological Processes,2016,30(8):1265-1279.
[80] 兰旻. 山坡尺度降雨产流过程宏观本构关系研究 [D]. 北京:清华大学,2014:1-13.[LAN Min. Study on constitutive relationship of runoff generation at the hillslope scale [D]. Beijing:Tsinghua University,2014:1-13]
[81] 王林华. 黄土坡耕地地表粗糙度对入渗、产流及养分流失的影响研究 [D].杨凌:西北农林科技大学,2017:15-24.[WANG Linhua. The role of soil surface roughness on soil infiltration,runoff generation and nutrient loss on the loess sloping farmland,subjected to simulated rainfall [D]. Yangling:Northwest A&F University,2017:15-24]
[82] ZHANG QIUFEN,LIU JIAKAI,YU XINXIAO,et al. Scale effects on runoff and a decomposition analysis of the main driving factors in Haihe Basin mountainous area[J]. Science of the Total Environment,2019,690(1):1089-1099.
[83] SIDLE R C,GOMI T,USUGA J C L,et al. Hydrogeomorphic processes and scaling issues in the continuum from soil pedons to catchments [J]. Earth-Science Reviews,2017,175:75-96.
[84] GERTEN D,SCHAPHOFF S,HABERLANDT U,et al. Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model [J]. Journal of Hydrology,2004,286(1-4):249-270.
[85] VANDERENT R J,SAVENIJE H H G,SCHAEFLI B,et al. Origin and fate of atmospheric moisture over continents [J]. Water Resources Research,2010,46:1-12.
[86] ZHANG Mimgfang,LIU Ning,Harper R, et al. A global review on hydrological responses to forest change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime [J]. Journal of Hydrology,2017,546:44-59.
[87] CRISTEA NC,LUNDQUIST JD,LOHEIDE SP,et al. Modelling how vegetation cover affects climate change impacts on streamflow timing and magnitude in the snowmelt-dominated upper Tuolumne Basin,Sierra Nevada [J]. Hydrological Processs,2014,28(12):3896-3918.
[88] ALAOUI A,ROGGER M,PETH S,et al. Does soil compaction increase floods? A review [J]. Journal of Hydrology,2018,557:631-642.
[89] FORMETTA G,CAPPARELLI G. Quantifying the three-dimensional effects of anisotropic soil horizons on hillslope hydrology and stability [J]. Journal of Hydrology,2019,570:329-342.
[90] Ran Qihua,Hong Yanyan,Chen Xiuxiu,et al. Impact of soil properties on water and sediment transport:A case study at a small catchment in the Loess Plateau [J]. Journal of Hydrology,2019,574:211-225.
[91] 王浩,贾仰文. 变化中的流域“自然-社会”二元水循环理论与研究方法 [J]. 水利学报,2016,47(10):1219-1226.[WANG Hao,JIA Yangwen. Theory and study methodology of dualistic water cycle in river basins under changing conditions [J]. Journal of Hydraulic Engineering,2016,47(10):1219-1226]
[92] 胡和平,田富强. 物理性流域水文模型研究新进展 [J]. 水利学报, 2007(5):511-517. [HU Heping,TIAN Fuqiang. Advancement in research of physically based watershed hydrological model [J]. Journal of Hydraulic Engineering,2007,(5):511-517]
[93] Hall DK,Riggs GA,Salomonson VV,et al. MODIS snow-cover products [J]. Remote Sensing of Environment,2002,83(1-2):181-194.
[94] Gao Hongkai,Birkel C,Hrachowitz M,et al. A simple topography-driven and calibration-free runoff generation module [J]. Hydrology and Earth System Sciences,2019,23(2):787-809.
[95] Bierkens M F P. Global hydrology 2015: State, trends, and directions[J]. Water Resources Research,2015,51:4923-4947
[96] Sivapalan M. The secret to ‘doing better hydrological science':change the question! [J]. Hydrological Processes,2009,23(9):1391-1396.
[97] 江净超,朱阿兴,秦承志,等. 分布式水文模型软件系统研究综述 [J]. 地理科学进展, 2014,(8):1090-1100. [JIANG Jingchao, ZHU Axing,QIN Chengzhi,et al. Review on distributed hydrological modelling software systems [J]. Progress in Geography,2014,(8):1090-1100]
[98] Zeng Faming,Jiang Zhongcheng,Shen Lina,et al. Assessment of multiple and interacting modes of soil loss in the karst critical zone,Southwest China(SWC)[J]. Geomorphology,2018,322:97-106.
[99] Tritz S,Guinot V,Jourde H. Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model[J]. Journal of Hydrology,2011,397(3-4):250-262.

相似文献/References:

[1]刘金涛,陈喜,吴吉春,等.山坡蓄量动力学理论及其在水文模拟中的应用前景[J].山地学报,2010,(05):513.
[2]王 雷,田明中,孙洪艳.中国山地型世界地质公园地质旅游的主要区域效益[J].山地学报,2015,(06):733.[doi:10.16089/j.cnki.1008-2786.000089]
 WANG Lei,TIAN Mingzhong,SUN Hongyan.Major Regional Benefits of Geological Tourism of Chinese Mountain-type Global Geoparks[J].Mountain Research,2015,(1):733.[doi:10.16089/j.cnki.1008-2786.000089]
[3]胡 实,韩 建,占车生*,等.基于地理加权回归模型的典型山地卫星反演降水产品降尺度研究[J].山地学报,2019,(03):451.[doi:10.16089/j.cnki.1008-2786.000437]
 HU Shi,HAN Jian,ZHAN Chesheng*,et al.Spatial Downscaling of Remotely Sensed Precipitation Using Geographically Weighted Regression Algorithms in Typical Mountainous Areas, China[J].Mountain Research,2019,(1):451.[doi:10.16089/j.cnki.1008-2786.000437]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-07-20; 改回日期(Accepted date):2019-12-17
基金项目(Foundation item):国家科技重大专项(2017ZX07101001-02); 中国科学院成都山地所“一三五”方向性项目(SDS-135-1702); 国家自然科学基金项目(41371241)。[National Science and Technology Major Project(2017ZX07101001-02); The 135 Strategic Program of the Institute of Mountain Hazards and Environment of CAS(SDS-135-1702); National Nature Science Foundation of China(41371241)]
作者简介(Biography):陆文(1996-),男,硕士研究生,湖南岳阳人,主要从事水文模拟研究。[LU Wen(1996-),male, born in Yueyang, Hunan province, M.Sc. Candidate, research on hydrological simulation] E-mail: luwen@imde.ac.cn
*通讯作者(Corresponding author):唐家良(1975-),男,研究员,四川隆昌人,主要从事流域水文研究。[TANG Jialiang(1975-), male, professor, specialized in watershed hydrology]E-mail: jltang@imde.ac.cn
更新日期/Last Update: 2020-01-30