[1]王 正,肖丽微,谭秋霞,等.三峡水库消落带优势草本植物对土壤氮磷的吸收富集特征[J].山地学报,2019,(02):151-160.[doi:10.16089/j.cnki.1008-2786.000409]
 WANG Zheng,XIAO Liwei,TAN Qiuxia,et al.Nitrogen and Phosphorus Absorption from Soil by the Dominant Herbaceous Species in the Water-Level-Fluctuation Zone of the Three Gorges Reservoir[J].Mountain Research,2019,(02):151-160.[doi:10.16089/j.cnki.1008-2786.000409]
点击复制

三峡水库消落带优势草本植物对土壤氮磷的吸收富集特征()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年02期
页码:
151-160
栏目:
山地环境
出版日期:
2019-04-25

文章信息/Info

Title:
Nitrogen and Phosphorus Absorption from Soil by the Dominant Herbaceous Species in the Water-Level-Fluctuation Zone of the Three Gorges Reservoir
文章编号:
1008-2786-(2019)2-151-10
作者:
王 正123肖丽微123谭秋霞123田琳琳123朱 波12*
1.中国科学院、水利部成都山地灾害与环境研究所,成都610041; 2.中国科学院山地表生过程与生态调控重点实验室,成都610041; 3.中国科学院大学,北京100049
Author(s):
WANG Zheng123 XIAO Liwei123 TAN Qiuxia123 TIAN Linlin123 ZHU Bo12*
1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; 2. Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, Chengdu 610041, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
三峡水库 消落带 草本植物 氮磷养分 富集能力 生态计量特征
Keywords:
Three Gorges Reservoir water-level-fluctuation zone herbaceous plants nitrogen and phosphorus absorption capacity ecological stoichiometry
分类号:
S151.9
DOI:
10.16089/j.cnki.1008-2786.000409
文献标志码:
A
摘要:
三峡水库消落带春夏出露,植物生长茂盛,可能拦蓄提取大量库区营养盐,研究消落带植物对氮磷养分的富集特征及其种间差异将为三峡消落带高效截污植被的筛选与重建提供重要基础数据。本文通过三峡水库消落带实地调研,采集典型草本植物,测定生物量和养分含量,计算富集系数和养分累积吸收量,从生态计量角度分析种间差异。结果表明,(1)三峡水库消落带优势植物主要为草本植物,优势草本植物有苍耳、青蒿、籽粒苋、铁线蕨、鬼针草、水蓼、稗草、空心莲子草、狗牙根、牛鞭草等。地上生物量的种间差异显著,苍耳和青蒿的地上生物量最高,铁线蕨地上生物量最低。(2)不同种类草本植物的氮磷吸收富集能力差异显著,苍耳和水蓼的氮富集系数最高; 狗牙根和青蒿对磷的富集系数最高,苍耳和青蒿氮磷累积吸收量最高。另据植物对氮磷的富集系数、累积吸收量和其地上生物量,可将消落带草本植物分为5类:强氮磷富集型(苍耳和青蒿)、氮富集型(籽粒苋)、磷富集型(狗牙根)、弱磷富集型(水蓼和空心莲子草)、弱氮磷富集型(稗草、鬼针草、铁线蕨和牛鞭草)。(3)若仅考虑植物对消落带土壤(底泥)的养分吸收,强富集型和富集型植被具有更强的光合吸收提取效率,生态截污能力强,因此,消落带截污植被恢复草本可选苍耳、青蒿、籽粒苋、狗牙根等。
Abstract:
Grass grew vigorously and might retain large amount of nutrients during spring and summer in the exposed bottom of water-level-fluctuation zone(WLFZ)of the Three Gorges Reservoir(TGR). Research on plants species' absorption capacity and their interspecific differences of soil nitrogen(N)and phosphorus(P)would provide important preliminary data for screening and rebuilding vegetation with high efficiency of pollutant interception in the TGR. In this study, ten dominant herbaceous plant species were collected for analysis of nutrients enrichment coefficient(EC)and absorption efficiencies. Influence factors of different absorption capacity among the species were analyzed by ecological stoichiometry methods. Results showed that, the dominant herbaceous plants were Xanthium sibiricum Patrin Widder, Herba Acroptili Repentis, Amaranthus tricolor L., Cynodon dactylon(L.)Pers., Echinochloa crusgalli(L.)Beauv., Bidens pilosa L., Adiantum capillus-veneris L. and Hemarthria altissima(Poir.)Stapfet C.E.Hubb in the WLFZ of the TGR. Aboveground biomass showed a significant difference among plants species while Xanthium sibiricum Patrin Widder's biomass was higher than other species. Moreover, there were significant differences of nutrients absorption ability among those dominant herbaceous plant species in the WLFZ. Xanthium sibiricum Patrin Widder was the specie with highest nitrogen EC, highest nitrogen and phosphorus cumulative uptake quantities. While Cynodon dactylon(L.)Pers got the highest phosphorus EC. The ten dominant plants were classified into five types by plants' enrichment coefficient, cumulative uptake quantities and above-ground biomass. Xanthium sibiricum Patrin Widder and Herba Acroptili Repentis were classified into a strong nitrogen and phosphorus enrichment group; Amaranthus hypochondriacus L. was in strong nitrogen enrichment group; Cynodon dactylon(L.)Pers. belonged to high phosphorus enrichment type; Polygonum hydropiper, Alternanthera philoxeroides(Mart.)Griseb. fell a relatively weak nitrogen enrichment type; Echinochloa crusgalli(L.)Beauv., Bidens pilosa L., Adiantum capillus-veneris L. and Hemarthria altissima(Poir.)Stapfet C.E.Hubb were attached to low nitrogen and phosphorus enrichment group. Regarding to nutrients uptake capacity, Xanthium sibiricum Patrin Widder, Herba Acroptili Repentis, Amaranthus hypochondriacus L. and Cynodon dactylon(L.)Pers. might be recommended as species for the ecological restoration in the WLFZ due to their higher phytoextration efficiency.

参考文献/References:

[1] WANTZEN K M, ROTHHAUPT K O, MORTL M, et al. Ecological effects of water-level fluctuations in lakes: an urgent issue[J]. Hydrobiologia, 2008, 613(1): 1-4.
[2] YUAN X Z, ZHANG Y W, LIU H, et al. The littoral zone in the Three Gorges Reservoir, China: challenges and opportunities[J]. Environment Science & Pollution Research International, 2013, 20(10): 7092-7102.
[3] 沈雅飞, 王娜, 刘泽彬, 等. 三峡水库消落带土壤化学性质变化[J]. 水土保持学报, 2016, 30(3): 190-195. [SHEN Yafei, WANG Na, LIU Zebin, et al. Changes of the soil chemical properties in hydro-fluctuation belt of Three Gorges Reservoir[J]. Journal of Soil and Water Conservation, 2016, 30(3): 190-195]
[4] 程瑞梅, 刘泽彬, 肖文发, 等. 三峡水库典型消落带土壤化学性质变化[J]. 林业科学, 2017, 53(2):19-25. [CHENG Ruimei, LIU Zebin, XIAO Wenfa, et al. Changes of soil chemical properties in typical hydro-fluctuation belt of Three Gorges Reservoir[J]. Scientia Silvae Sinicae, 2017, 53(2):19-25]
[5] 肖丽微. 三峡水库消落带土壤-植物系统淹水浸泡的养分释放特征[D]. 北京: 中国科学院大学, 2017:12-13. [XIAO Liwei. Characteristics of nutrient release under indundation from soil and plants in the water-level fluctuation zone of the Three Gorges Reservoir[D]. Beijing: University of Chinese Acadamy of Sciences, 2017:12-13]
[6] 谭淑端, 王勇, 张全发. 三峡水库消落带生态环境问题及综合防治[J]. 长江流域资源与环境, 2008, 17(01): 101-105. [TAN Shuduan, WANG Yong, ZHANG Quanfa. Environmental challenges and countermeasures of the water-level-fluctuation zone(WLFZ)of the Three Gorges Reservoir[J]. Resources and Environment in the Yangtze Basin, 2008, 17(01): 101-105]
[7] 张金洋, 王定勇, 石孝洪. 三峡水库消落区淹水后土壤性质变化的模拟研究[J]. 水土保持学报, 2004, 18(06): 120-123. [ZHANG Jinyang, WANG Dingyong, SHI Xiaohong. Change of soil character after flooding in drawdown area of Three Gorges Reservoir[J]. Journal of Soil Water Conservation, 2004, 18(6):120-123]
[8] 吕发友, 鲍玉海, 贺秀斌, 等. 三峡水库消落带淹水--落干交替下紫色土力学特性变化模拟[J]. 水土保持学报, 2017, 31(3): 79-84. [LYU Fayou, BAO Yuhai, HE Xiubin, et al. Simulation of the changes in purple soil mechanical properties in response to alternate submergence and exposure in the riparian zone of the Three Gorges Reservoir[J]. Journal of Soil & Water Conservation, 2017, 31(3): 79-84]
[9] 胥焘, 王飞, 郭强, 等. 三峡水库香溪河消落带及库岸土壤重金属迁移特征及来源分析[J]. 环境科学, 2014, 35(4): 1502-1508. [XU Tao, WANG Fei, GUO Qiang, et al. Transfer characteristic and source identification of soil heavy metals from water-level-fluctuating zone along Xiangxi River, Three Gorges Reservoir area[J]. Environmental Science, 2014, 35(4): 1502-1508]
[10] GAO B, GAO L, XU D, et al. Assessment of Cr pollution in tributary sediment cores in the Three Gorges Reservoir combining geochemical baseline and in situ DGT[J]. Science of Total Environment, 2018, 628-629: 241-248.
[11] CHEN Y, LI S, ZHANG Y, et al. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir,China[J]. Journal of Hazardous Materials, 2011, 191(1): 366-372.
[12] ZHANG B, GUO J S, FANG F, et al. Concentration of nutrients in the soil in water-level-fluctuating zone of Three Gorges Reservoir[J]. Ecohydrology & Hydrobiology, 2012, 12(2): 105-114.
[13] ZHANG B, FANG F, GUO J, et al. Phosphorus fractions and phosphate sorption-release characteristics relevant to the soil composition of water-level-fluctuating zone of Three Gorges Reservoir[J]. Ecological Engineering, 2012, 40(3): 153-159.
[14] YE C, CHENG X, ZHANG Q. Recovery approach affects soil quality in the water-level fluctuation zone of the Three Gorges Reservoir, China: implications for revegetation[J]. Environmental Science & Pollution Research International, 2014, 21(3): 2018-2031.
[15] XIAO L W, ZHU B, NSENGA K M, et al. Plant soaking decomposition as well as nitrogen and phosphorous release in the water-level fluctuation zone of the Three Gorges Reservoir[J]. Science of Total Environment, 2017, 592:527-534.
[16] 谭秋霞, 朱波, 花可可. 三峡水库消落带典型草本植物淹水浸泡后可溶性有机碳的释放特征[J]. 环境科学, 2013, 34(8): 3043-3048. [TAN Qiuxia, ZHU Bo, HUA Keke. Characteristics of dissolved organic carbon release under inundation from typical grass plants in the water-level fluctuation zone of the Three Gorges Reservoir area[J]. Environmental Science, 2013, 34(8): 3043-3048]
[17] 王建超, 朱波, 汪涛, 等. 三峡水库典型消落带草本植物氮磷养分浸泡释放实验[J]. 环境科学, 2012, 33(4): 1144-1151. [WANG Jianchao, ZHU Bo, WANG Tao, et al. Nitrogen and phosphorus release from herbaceous vegetation under simulated inundation experiment of water-level fluctuation zone in the Three Gorges Reservior Area [J]. Environmental Science, 2012, 33(4): 1144-1151]
[18] TANG X Q, MIN W U, JIN F. Vegetation restoration and reconstruction in the water level-fluctuation zone of Three Gorges Reservoir Area[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(3): 13-17.
[19] 杜立刚, 方芳, 郭劲松, 等. 三峡水库城市消落带生态规划与保护探讨[J]. 长江流域资源与环境, 2012, 21(6): 726-731.[DU Ligang, FANG Fang, GUO Jinsong, et al. Ecological planning and protection of urban water-level-fluctuation zone in the Three Gorges Reservoir[J]. Resources & Environment in the Yangtze Basin, 2012, 21(6): 726-731]
[20] 王勇, 刘义飞, 刘松柏, 等. 三峡水库消涨带植被重建[J]. 植物学报, 2005, 22(5): 513-522. [WANG Yong, LIU Yifei, LIU Songbai, et al. Vegetation reconstruction in the water-level-fluctuation zone of the Three Gorges Reservoir[J]. Chinese Bulletin of Botany, 2005, 22(5):513-522]
[21] 马利民, 唐燕萍, 张明, 等. 三峡水库消落区几种两栖植物的适生性评价[J]. 生态学报, 2009, 29(4): 1885-1892. [MA Liming, TANG Yanping, ZHANG Ming, et al. Evaluation of adaptability of plants in water-fluctuation-zone of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2009, 29(4):1885-1892]
[22] XIAO G L, LI T X, ZHANG X Z, et al. Uptake and accumulation of phosphorus by dominant plant species growing in a phosphorus mining area[J]. Journal of Hazardous Materials, 2009, 171(2009): 542-550.
[23] GüSEWELL S. N:P ratios in terrestrial plants: variation and functional significance [J]. New Phytologist, 2004, 164(2): 243-266.
[24] BAZZAZ F A. Allocation of resources in plants: state of the science and critical questions[J]. Plant Resource Allocation, 1997: 1-37.
[25] PALO F D, FORNARA D. Soil fertility and the carbon:nutrient stoichiometry of herbaceous plant species[J]. Ecosphere, 2015, 6(12):1-15.
[26] 贺金生, 韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1):2-6. [HE Jinsheng, HAN Xingguo. Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1):2-6]
[27] YU Q, WU H, HE N, et al. Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass[J]. Plos One, 2012, 7(3):1-9.
[28] 蒙吉军, 申文明, 吴秀芹. 基于RS/GIS的三峡水库景观生态综合评价[J]. 北京大学学报, 2005, 41(2): 295-302. [MENG Jijun, SHEN Wenming, WU Xiuqin. Integrated landscape ecology evaluation based on RS/GIS of Three-Gorge Area[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2005, 41(2): 295-302]
[29] LEE A A, BUKAVECKAS P A. Surface water nutrient concentrations and litter decomposition rates in wetlands impacted by agriculture and mining activities[J]. Aquatic Botany, 2002, 74(4): 273-285.
[30] 王建超, 朱波, 汪涛. 三峡库区典型消落带淹水后草本植被的自然恢复特征[J]. 长江流域资源与环境, 2011, 20(5): 603-610. [WANG Jianchao, ZHU Bo, WANG Tao. Characteristics of restoration of natural herbaceous vegetation of typical water-level fluctuation zone after flooding in the Three Gorges Reservoir area[J]. Resources and Environment in the Yangtze Basin, 2011, 20(5):603-610]
[31] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 228-233. [LU Rukun. Analysis methods of soil agricultural chemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000:228-233]
[32] SALT D E, BLAYLOCK M, KUMAR N P, et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants[J]. Biotechnology, 1995, 13(5): 468-474.
[33] KUMWIMBA M N, ZHU B, SUANON F, et al. Long-term impact of primary domestic sewage on metal/loid accumulation in drainage Ditch sediments, plants and water: Implications for phytoremediation and restoration[J]. Science of Total Environment, 2017, 81-582: 773-781.
[34] BAKER A J M, BROOKS R R, PEASE A J, et al. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L.(Caryophyllaceae)from Zaïre[J]. Plant & Soil, 1983, 73(3):377-385.
[35] 张永涛, 崔保山, 蓝艳,等. 白洋淀不同年龄芦苇根状茎中氮和磷含量[J]. 湿地科学, 2013, 11(2):286-291. [ZHANG Yongtao, CUI Baoshan, LAN Yan, et al. Nitrogen and phosphorous contents in phrag mites australis Rhizomes at different ages in Baiyangdian Lake[J]. Wetland Science, 2013, 11(2):286-291]
[36] 郭泉水, 康义, 赵玉娟, 等. 三峡水库消落带土壤氮磷钾、pH值和有机质变化[J]. 林业科学, 2012, 48(3):7-10. [GUO Quanshui, KANG Yi, ZHAO Yujuan, et al. Changes in the contents of N,P, K, pH and organic matter of the soil which experienced the Hydro-Fluctuation in the Three Gorges Reservoir[J]. Scientia Silvae Sinicae, 2012, 48(3):7-10]
[37] 赵原, 王彦, 汪涛,等. 川中丘陵区高富集氮、磷沟渠植物的筛选[J]. 环境污染与防治, 2015, 37(10):12-16. [ZHAO Yuan, WANG Yan, WANG Tao, et al. Screening for high nitrogen and phosphorus enrichment ditch plants in the Hilly Area of Central Sichuan Basin[J]. Environmental Pollution and Control, 2015, 37(10):12-16]
[38] 李建娜, 胡曰利, 吴晓芙,等. 人工湿地污水处理系统中的植物氮磷吸收富集能力研究[J]. 环境污染与防治, 2007, 29(7):506-509. [LI Jianna, HU Yueli, WU Xiaofu, et al. Nitrogen and phosphorus removal capacity of plants pecies in constructed wetlands for treating municipal wastewater[J]. Environmental Pollution & Control, 2007, 29(7):506-509]
[39] HOGAN E J, MINNULLINA G, SMITH R I, et al. Effects of nitrogen enrichment on phosphatase activity and nitrogen: phosphorus relationships in Cladonia portentosa[J]. New Phytologist, 2010, 186(4): 911-925.
[40] WARDLE D A, WALKER L R, BARDGETT R D. Ecosystem properties and forest decline in contrasting long-term chronosequences[J]. Science, 2004, 305(5683): 509-513.
[41] HE J S, WANG L, FLYNN D F, et al. Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes[J]. Oecologia, 2008, 155(2): 301-310.
[42] KOERSELMAN W. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450.
[43] HAN W, FANG J, GUO D, et al. Leaf Nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2):377-385.
[44] 米玮洁, 邹怡, 李明, 等. 三峡水库消落区典型草本植物氮、磷养分计量特征[J]. 湖泊科学, 2016, 28(4): 802-811. [MI Weijie, ZOU Yi, LI Ming, et al. Nitrogen and phosphorus stoichiometry characteristics of typical herb plants in the water level-fluctuation zone of Three Gorges Reservoir[J]. Lake Science, 2016, 28(4): 802-811]
[45] ELSER J J, STERNER R W, GOROKHOVA E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2010, 3(6): 540-550.
[46] TILMAN D. Resource competition and community structure[M]. Princeton: Princeton University Press, 1982:139-177.
[47] HENDRICKS J J, ABER J D, NADELHOFFER K J, et al. Nitrogen controls on fine root substrate quality in temperate forest ecosystems[J]. Ecosystems, 2000, 3(1): 57-69.
[48] 李仲明. 中国紫色土[M]. 成都: 科学出版社, 1991:325-327. [LI Zhongming. Purple soil in China[M]. Chengdu: Science Press, 1991:325-327]

相似文献/References:

[1]张淑娟,贺秀斌*,鲍玉海,等.三峡水库消落带土壤团聚体微结构变化特征[J].山地学报,2020,(3):360.[doi:10.16089/j.cnki.1008-2786.000516]
 ZHANG Shujuan,HE Xiubin*,et al.Change Features of Soil Aggregate Microstructure in the Water-level Fluctuation Zone of the Three Gorges Reservoir, China[J].Mountain Research,2020,(02):360.[doi:10.16089/j.cnki.1008-2786.000516]

备注/Memo

备注/Memo:
收稿日期(Received date):2018-10-28; 改回日期(Accepted date):2019-04-09
基金项目(Foundation item):国家自然科学基金重点项目(41430750)。[Key Project of the National Natural Science Foundation of China(41430750)]。
作者简介(Biography):王正(1991-),男,硕士研究生,安徽凤阳人,主要从事土壤养分循环研究。[WANG Zheng(1991-), male, born in Fengyang, Anhui province, M. Sc. candidate, research on soil nutrients cycle] E-mail: 15955369833@163.com
*通讯作者(Corresponding author):朱波(1966-),男,研究员,主要从事土壤氮循环研究。[ZHU Bo(1966-), male, Ph.D., professor, specialized in soil nitrogen cycle] E-mail:bzhu@imde.ac.cn
更新日期/Last Update: 2019-03-30