[1]刘发明,王东坡,何思明*,等.泥石流冲击桥墩绕流过程模拟与试验分析[J].山地学报,2018,(04):571-580.[doi:10.16089/j.cnki.1008-2786.000353]
 LIU Faming,WANG Dongpo,HE Siming*,et al.Numerical Simulation and Experiment Analyses of DebrisFlow Movement around Bridge Pier[J].Mountain Research,2018,(04):571-580.[doi:10.16089/j.cnki.1008-2786.000353]
点击复制

泥石流冲击桥墩绕流过程模拟与试验分析()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2018年04期
页码:
571-580
栏目:
山地灾害
出版日期:
2018-07-30

文章信息/Info

Title:
Numerical Simulation and Experiment Analyses of Debris Flow Movement around Bridge Pier
文章编号:
1008-2786-(2018)4-571-10
作者:
刘发明1王东坡23何思明2*李明清1付 刚1张 伦4
1.中国中铁二院工程集团有限责任公司,成都610031; 2.中国科学院山地灾害与地表过程重点实验室,成都 610041; 3.成都理工大学地质灾害防治与地质环境保护国家重点实验室,成都 610059; 4.成兰铁路有限责任公司,成都610031
Author(s):
LIU Faming1 WANG Dongpo23HE Siming2* LI Mingqing1 FU Gang1 ZHANG Lun4
1.China Railway Eryuan Engineering Group CO.LTD, Chengdu 610031,China; 2.Key Laboratory of Mountain Hazards and Surface Process, Chinese Academy of Science, Chengdu 610041,China; 3.State Key Laboratory of Geohazard Prevention and Geoenvironment Protecti
关键词:
泥石流 桥墩绕流 流固耦合 固液两相流 有限体积法
Keywords:
debris flow flow around bridge pier fluid-solid coupling finite volume method
分类号:
P642.22
DOI:
10.16089/j.cnki.1008-2786.000353
文献标志码:
A
摘要:
泥石流与桥墩动力相互作用包括泥石流对桥墩的冲击淤埋作用及桥墩对泥石流运动过程的反向影响,其中涉及复杂的流固耦合,是学术界关注的热点问题。为研究泥石流绕流桥墩过程,在纳维斯托克斯方程的基础上结合深度平均理论,考虑泥石流固液两相的特点,构建了泥石流-桥墩流固耦合物理模型,并基于有限体积法建立时间和空间尺度上具有2阶精度的高效数值算法,实现了泥石流绕桥墩运动全程模拟,与室内试验成果进行了对比验证。结果表明:不同粘度的泥石流冲击桥墩绕流过程有显著不同,相同初始条件下粘性泥石流堆积厚度较大,运动速度较小,堆积范围较小; 反之,稀性泥石流堆积厚度较小,运动速度较大,堆积范围也较大。数值模拟结果与室内模型试验非常接近,验证了物理模型的适用性。
Abstract:
The dynamic interactions between debris flow and piers comprise the impact of debris flow on piers and the resulting reverse effects of piers on the mobility of debris flow, involving complex fluid-solid coupling, and it is one of the most concerns in academic society.To investigate the behavior of debris flow moving around bridge piers, a two-dimensional physical model of debris flow-bridge pier was constructed based on Navier-Stokes equations combined with depth-averaged theory, where the characteristics of solid-fluid two-phase debris flow were included in the study.An efficient numerical algorithm with two-order precision on the time and space scales was established based on finite volume method to simulate the process of debris flow with varied viscosities striking bridge piers.Results showed that the high solid volume fraction could reduce the debris flow mobility and affect deposition shape of debris flow significantly; Viscous debris flow led to greater thickness in debris accumulation at flume outlet but smaller size of debris fan, and a higher kinematic velocity than micro-viscous debris flow under the same initial conditions.The result of numerical simulation was consistent with that of laboratory tests, suggesting the applicability of the proposed physical model.

参考文献/References:

[1] HUNGR O, MORGAN G C, KELLERHALS R.Quantitative analysis of debris torrent hazards for design of remedial measures[J].Canadian Geotechnical Journal, 1984, 21(4): 663-677
[2] PITMAN A J.The evolution of, and revolution in, land surface schemes designed for climate models[J].International Journal of Climatology, 2003, 23(5): 479-510
[3] MCDOUGALL S, HUNGR O.Dynamic modelling of entrainment in rapid landslides[J].Canadian Geotechnical Journal, 2005, 42(5): 1437-1448
[4] IVERSON R M.Elementary theory of bed-sediment entrainment by debris flows and avalanches[J].Journal of Geophysical Research: Earth Surface, 2012, 117, F03006
[5] SAAR M O, MANGA M.Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints[J].Journal of Geophysical Research: Solid Earth, 2004, 109, B04204
[6] 李新坡, 何思明.节理岩质边坡破坏过程的 PFC2D 数值模拟分析[J].四川大学学报: 工程科学版, 2010,(S1): 70-75[LI xinpo, HE siming.Numerical analysis of the failure of heavily jointed rock slopes using PFC2D[J].Journal of Sichuan University(Engineering Science Edition), 2010,(S1), 70-75]
[7] TEUFELSBAUER H, WANG Y, PUDASAINI S P, et al.DEM simulation of impact force exerted by granular flow on rigid structures[J].Acta Geotechnica, 2011, 6(3): 119
[8] BUCHHOLTZ V, PÖSCHEL T.Interaction of a granular stream with an obstacle[J].Granular Matter, 1998, 1(1): 33-41
[9] FAUG T, LACHAMP P, NAAIM M.Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle.Application to interaction between dense snow avalanches and defencestructures[J].Natural hazards and Earth System Sciences, 2002, 2(3/4): 187-191
[10] ZAKERI A, HØEG K, NADIM F.Submarine debris flow impact on pipelines-Part I: Experimental investigation[J].Coastal Engineering, 2008, 55(12): 1209-1218
[11] 姚昌荣, 王友彪, 刘赛智.重力式桥墩在泥石流冲击作用下的响应分析[J].桥梁建设, 2017,47(4): 18-23 [YAO Changrong, WANG Youbiao, LIU Saizhi.Analysis of Response of Gravity Bridge Pier Under Impact of Debris Flow[J].Bridge Construction,2017,47(4): 18-23]
[12] 陈子俊.泥石流冲击作用下桥墩的动力响应分析[D].华南理工大学, 2017[CHEN Zijun.Dynamic fesponse analysis of pier Under Impact of Debris Flow[D].South China University of Technology, 2017,39-75]
[13] SAVAGE S B, HUTTER K.The motion of a finite mass of granular material down a rough incline[J].Journal of Fluid Mechanics,1989(199): 177-215
[14] IVERSON R M.The physics of debris flows[J].Reviews of Geophysics, 35(3): 245-296
[15] 张丽剑,罗跃生,张文平.变限积分的有限体积法解决对流扩散方程[J].哈尔滨工程大学学报, 2015, 36(3): 427-431[ZHANG Lijian, LUO Yuesheng, ZHANG Wenping.Solving convection-diffusion equation by using the finite volume method with variable limit integral[J].Journal of Harbin Engineering University, 2015, 36(3): 427-431]
[16] 关朋燕, 李春光,景何仿.TDMA算法在迭代求解二维对流扩散问题中的收敛性证明[J].高等学校计算数学学报, 2014, 36(1): 77-85[GUAN Pengyan, LI Chunguang, JING Hefang.Proof on the convergence of TDMA algorithm in the iterative solution of two-dimensional convection-diffusion problems[J].Numerical Mathematics: Theory, Methods and Applications, 2014, 36(1): 77-85]
[17] LIU Wei, HE Siming, OUYANG Chaojun.Two-dimensional dynamics simulation of two-phase debris flow.Acta Geologica Sinica(English Edition), 2017, 91(5): 1873-1883

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(04):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(04):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(04):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(04):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(04):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(04):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(04):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(04):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(04):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(04):495.

备注/Memo

备注/Memo:
收稿日期(Received date):2017-11-21; 改回日期(Accepted date):2018-07-23
基金项目(Foundation item):铁道部科技研究开发计划课题(Z2012-061); 国家自然科学基金项目(41502297); 中国博士后科学基金(2017M612997); 铁总试验专项(CLRQT-2015-012); 中国中铁股份有限公司科技开发计划课题(2012-重大-3)。[Technology Research and Development Plan of China Railway(Z2012-061); National Natural Science Foundation of China(41502297); China Postdoctoral Science Foundation(2017M612997); Experimental Project of China Railway(CLRQT-2015-012); Technology Development Plan of China Railway Group Limited(2012-Major-3).]
作者简介(Biography):刘发明(1965-),男,四川人,高级工程师,主要从事铁路桥梁、地质灾害等方面研究。[LIU Faming(1965-),male,born in Sichuan province,senior engineer,mainly research on bridges and geological disasters]E-mail: huapo2017@163.com
*通讯作者(Corresponding author):何思明(1968-),男,四川人,博士,研究员,博士生导师,主要从事山地灾害形成机制及防治技术等方面的研究工作。[HE Siming(1968-), male,Ph.D, professor,mainly research on mountain disaster formation mechanism and prevention technology]E-mail:hsm@imde.ac.cn
更新日期/Last Update: 2018-07-30