[1]韩用顺,吴淼,曹泽辉,等.震后小流域重力侵蚀产沙效应--以汶川震中莲花芯沟为例[J].山地学报,2018,(02):260-270.[doi:10.16089/j.cnki.1008-2786.000321]
 HAN Yongshun,WU Miao,CAO Zehui,et al.Gravitational Erosion and Associated Effects of Sediment Yield in a Small Post-shock Catchment Based on SAR Remote Sensing -A Case Study in Lianhuaxin Gully, Sichuan, China[J].Mountain Research,2018,(02):260-270.[doi:10.16089/j.cnki.1008-2786.000321]
点击复制

震后小流域重力侵蚀产沙效应--以汶川震中莲花芯沟为例()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2018年02期
页码:
260-270
栏目:
山地灾害
出版日期:
2018-03-30

文章信息/Info

Title:
Gravitational Erosion and Associated Effects of Sediment Yield in a Small Post-shock Catchment Based on SAR Remote Sensing -A Case Study in Lianhuaxin Gully, Sichuan, China
文章编号:
1008-2786-(2018)2-260-11
作者:
韩用顺12吴淼2曹泽辉2张东水1陈勇国3
1.湖南科技大学 资源环境与安全工程学院,湖南 湘潭 411201; 2.湘潭大学 土木工程与力学学院,湖南 湘潭 411105; 3.湖南科技学院 土木与环境工程学院,湖南 永州 425199
Author(s):
HAN Yongshun12 WU Miao2 CAO Zehui2 ZHANG Dongshui1 CHEN Yongguo3
1.School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China; 2.College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, Hunan, China; 3.College of Civil and
关键词:
震后泥石流 侵蚀产沙效应 D-InSAR 偏移量跟踪技术 数字坡沟系统 莲花芯沟
Keywords:
debris flows in earthquake-stricken area erosion and sediment effect D-InSAR and offset-tracking technologies digital slope-channel-watershed system Lianhuaxin gully
分类号:
P642.23
DOI:
10.16089/j.cnki.1008-2786.000321
文献标志码:
A
摘要:
震后小流域重力侵蚀过程与机制复杂,具有显著的产沙输沙效应,造成强烈的水土流失,严重威胁灾后重建和重大工程安全,是泥石流和土壤侵蚀领域研究的热点与难点之一。本文以震中莲花芯沟为典型研究区,选取2008-2010年的三场泥石流,采用多源遥感和GIS等手段,建立数字坡沟系统,融合D-InSAR和偏移量跟踪技术,生成不同场次泥石流前后的三维地表形变场,研究震后泥石流在不同类型 “坡体-沟道-流域”上的多尺度侵蚀产沙特征与物质迁移过程。结果表明:1)2008-2010年三场泥石流,坡体侵蚀总量分别为6.44×105m3、3.36×105m3和3.02×105m3,输入沟道的泥沙总量分别为3.54×105m3、1.56×105m3和5.16×105m3,流域侵蚀总量分别为6.736×105m3、5.217×105m3、5.540×105m3,流域输沙总量分别为3.84×105m3、2.24×105m3、2.96×105m3; 2)坡体重力侵蚀产沙量占各级沟道总来沙量的50%以上,是各级沟道泥沙的主要来源,其中以凸凹型坡、凸型坡和混合型坡三类坡体产沙最多,占坡体总产沙量的85%以上,且随沟道级别升高(三级→二级→一级)而呈递减趋势,二级沟道在各级沟道中输沙贡献率最大、达45%,是主沟泥沙重要来源; 3)坡体侵蚀量与侵蚀面积及堆积量与堆积面积的比值均存在指数函数关系,坡体产沙量与坡体单元面积的比值呈线性正相关关系,坡体侵蚀量、堆积量、产沙量均随其对应面积的增大而增大; 4)震后坡体侵蚀速率呈先减小后增大趋势,最大侵蚀速率在凸凹型坡体单元、达0.24m/次; 流域侵蚀速率也呈先减小后增大趋势,同时,存在由低到高逐级递增趋势,其中主流域侵蚀速率最大、达0.39m/次; 5)各级流域泥沙输移比随流域级别增高而减小,其中主流域泥沙输移比最低、为0.28,三级流域最高、达0.93。研究结果可以为灾区小流域泥沙调控、重大工程选址选线、河流整治和次生山地灾害风险评估及防治工程设计提供依据和参考,对保障山区公共安全具有重要意义。
Abstract:
Gravity erosion in small watershed after earthquake is one of the research hotspots and difficulties in the field of debris flow and soil erosion, for its process and mechanism are complicated with significant sediment yield and transportation effect, thus causing strong soil erosion and threatening post-disaster reconstruction and major engineering safety.In this paper, Lianhuaxin gully in the epicenter of Wenchuan Earthquake is taken as a typical study area and three debris flow occurring between 2008 and 2010 are selected.By means of multi-source remote sensing and GIS technologies, the system of digital slope-channel-watershed is established.Combined D-InSAR with offset tracking technology, three-dimensional surface deformation fields are created before and after different scence of debris flows.Correspondingly, multi-scale erosion and sediment characteristics and the material migration process of debris flows after earthquake in different types of slope, channel and watershed is analyzed.The results show that: a.considering three scenes of debris flows between 2008 and 2010, the total amount of slope erosion is respectively 6.44×105 m3,3.36×105 m3 and 3.02×105 m3, the total amount of sediment from slope to channel respectively 3.54×105 m3,1.56×105 m3 and 5.16×105 m3, and the total amount of sediment transportation in watershed 3.84×105 m3,2.24×105 m3 and 2.96×105 m3.b.the yield amount of slope sediment accounts for more than 50 percentage of the total incoming sediment amount of channels at all levels.So the gravity erosion and sediment from slopes is the main sediment source of channels at all levels; among them, most of yield sediment amount comes from convex-concave, convex and mixed slopes, which accounts for more than 85 percentage of the total slope yield sediment amount and presents a decreasing trend with channel level increasing.The secondary channel has the largest contribution rate of sediment transport in all levels of channels and is the main sediment source of the main channel.c.There are exponential function relationships between the ratio of slope erosion amount and corresponding erosion area as well as that of slope accumulation amount and accumulation area; there is a linear positive correlation between the ratio of slope sediment yield and slope unit area; slope erosion, accumulation and sediment yield amount increases with its corresponding area increasing.d.After the earthquake, the slope erosion rate decreases firstly and then increases, and the maximum erosion rate appears in convex-concave slopes, up to 0.24 m each time; the watershed erosion rate also shows the same trend, additionally, it takes on an increasing trend from low to high levels and the largest erosion rate is in the main watershed, up to 0.39 m each time.e.The sediment transport ratio at all levels of watersheds decreases with increasing watershed level, which is the lowest in the main watershed with 0.28 while the highest in the third level watershed with 0.93.The research results have great significance to safeguard public safety in mountain areas, and can provide basis and reference for sediment control in small watersheds in earthquake-stricken area, site selection for major projects, river rehabilitation, risk assessment for secondary mountain disasters and prevention and control engineering design

参考文献/References:

[1] 许强.四川省8·13特大泥石流灾害特点、成因与启示[J].工程地质学报,2010,18(5):596-608.[XU Qiang.The 13 august 2010 catastrophic debris flows in Sichuan Province: characteristics, genetic mechanism and suggestions [J].Journal of Engineering Geology, 2010, 18(5):596-608.]
[2] 唐川,李为乐,丁军,等.汶川震区映秀镇“8·14”特大泥石流灾害调查[J].地球科学:中国地质大学学报,2011,36(1):172-180.[TANG Chuan, LI Weile, DING Jun, et al.Field investigation and research on giant debris flow on August 14, 2010 in Yingxiu Town, epicenter of Wenchuan earthquake [J].Journal of China University of Geosciences, 2011, 36(1): 172-180.]
[3] 许炯心.“十大孔兑”侵蚀产沙与风水两相作用及高含沙水流的关系[J].泥沙研究,2013(6):28-37.[XU Jiongxin.Erosion and sediment yield of 10 small tributaries joining Inner Mengolia reach of upper Yellow River in relation with coupled wind-water processes and hyperconcentrated flows [J].Journal of Sediment Research, 2013(6): 28-37.]
[4] MONTRASIO L, VALENTINE R.Experimental analysis and modeling of shallow landslides [J].Landslides, 2007, 4(3): 291-296.
[5] KIM H, LEE S W, YUNE C Y, et al.Volume estimation of small scale debris flows based on observations of topographic changes using airborne LiDAR DEMs[J].Journal of Mountain Science, 2014, 11(3): 578-591.
[6] 王涛,陈宁生,邓明枫,等.沟道侵蚀型泥石流起动临界条件研究进展[J].泥沙研究,2014(02):75-80.[WANG Tao, CHENG Ningsheng, DENG Mingfeng, et al.Progress in study of mechanism and critical condition for initiation of debris flows due to bed failure [J].Journal of Sediment Research, 2014(02): 75-80.]
[7] LI Yong, LIU Jingjing, HU Kaiheng, et al.Probability distribution of measured debris-flow velocity in Jiangjia Gully, Yunnan Province, China [J].Natural Hazards, 2012, 60(2): 689-701.
[8] GUO C X, ZHOU J W, CUI P, et al.A theoretical model for the initiation of debris flow in unconsolidated soil under hydrodynamic conditions [J].Natural Hazards & Earth System Sciences Discussions, 2014, 2(6): 4487-4524.
[9] YU Guoqiang, ZHANG Maosheng, LI Zhanbin, et al.Piecewise prediction model for watershed-scale erosion and sediment yield of individual rainfall events on the Loess Plateau, China [J].Hydrological Processes, 2014, 28(21): 5322-5336.
[10] STOFFEL M, MENDLIK T, SCHNEUWLY-BOLLSCHWEILE M, et al.Possible impacts of climate change on debris-flow activity in the Swiss Alps [J].Climatic Change, 2014, 122(1-2): 141-155.
[11] YANG Jishan, YAO Wenyi, MA Xingping, et al.Progress of the gravity erosion and sediment yield study in the Loess Plateau [J].Yellow River, 2011, 9(33): 77-79.
[12] CHE Xiaoli, WANG Wenlong, GUO Junquan, et al.Effects of up-slope runoff and sediment on ephemeral gully erosion sediment and hydraulic parameters [J].Science of Soil & Water Conservation, 2011, 9(3): 26-31.
[13] 松永光平,甘枝茂.黄土高原重力侵蚀的地质地貌因素分析-从发生的规模频度看区域特征[J].水土保持通报,2007,27(1):55-57.[MATSUNAGA Kouhei, GAN Zhimao.Geological and geomorphological conditions of mass movements in the Loess Plateau-Regional characteristics from the viewpoint of magnitude and frequency of event occurrence [J].Bulletin of Soil and Water Conservation, 2007, 27(1): 55-57.]
[14] NI H, SONG Z, XU W.Formation mechanism and disaster characteristics of debris flows originated predominately from gully erosion: Taking the 2013-07-04 clusted debris flows in Shimian County as an example [J].Journal of Natural Disasters, 2015, 24(2): 97-106.
[15] 杨吉山,姚文艺,郑明国,等.岔巴沟淤地坝小流域重力侵蚀产沙量分析[J].水利学报,2017(02):241-245.[YANG Jishan, YAO Wenyi, ZHENG Mingguo, et al.Analysis on gravitational sediment yield in the check-dam controlled basins of Chabagou Watershed [J].Journal of Hydraulic Engineering, 2017(02): 241-245.]
[16] CHEN C L.Generalized viscoplastic modeling of debris flow [J].Journal of Hydraulic Engineering, 2014, 114(3): 237-258.
[17] SHORT N, LEBLANC A M, SLADEN W, et al.RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit Airport, Baffin Island, Canada [J].Remote Sensing of Environment, 2014, 141(2): 40-51.
[18] 郭兆成,童立强,郑雄伟,等.四川芦山地震次生地质灾害遥感调查及灾害特征初探[J].国土资源遥感,2014(03):99-105.[GUO Zhaocheng, TONG Liqiang, ZHEN Xiongwei, et al.Remote sensing survey of secondary geological disasters triggered by Lushan earthquake in Sichuan Province and tentative discussion on disaster characteristics [J].Remote Sensing for Land & Resources, 2014(03): 99-105.]
[19] 韩用顺,黄鹏,朱颖彦.震区山洪泥石流野外监测与侵蚀产沙研究[J].水利学报,2012(S2):133-139.[HAN Yongshun, HUANG Peng, ZHU Yingyan, et al.Field monitoring and erosion-deposition sediment of flash-flood debris flow in suffered areas-A case study at Lianhuaxin Gully [J].Journal of Hydraulic Engineering, 2012(S2): 133-139.]

备注/Memo

备注/Memo:
收稿日期(Received date):2017-11-28; 改回日期(Accepted date):2018-3-22
基金项目(Foundation item):岩土力学与工程安全湖南省重点实验室开放基金(16GES06); 交通运输部科技计划项目(20153161T906); 特殊环境道路工程湖南省重点实验室开放基金(kfj120404)。[Hunan Key Laboratory of Geomechanics and Engineering Safety(16GES06); Ministry of Transport Science and Technology Program(20153161T906); Key Laboratory of Special Environment Road Engineering of Hunan province(kfj120404).]
作者简介(Biography):韩用顺(1974-),男,河南信阳人,博士,教授,主要研究方向:山地灾害与3S技术及应用研究。[Han Yongshun(1974-), male, born in Xinyang, Henan province, Ph.D professor, mainly engaged in mountain hazards, 3S technologies and applications.] E-mail:yongshunhan@126.com
更新日期/Last Update: 2018-03-30