[1]梁 斌,齐 实*,李智勇,等.青藏高原湖泊面积动态变化及其对气候变化的响应[J].山地学报,2018,(02):206-216.[doi:10.16089/j.cnki.1008-2786.000316]
 LIANG Bin,QI Shi*,LI Zhiyong,et al.Dynamic Change of Lake Area over the Tibetan Plateau and Its Response to Climate Change[J].Mountain Research,2018,(02):206-216.[doi:10.16089/j.cnki.1008-2786.000316]
点击复制

青藏高原湖泊面积动态变化及其对气候变化的响应()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2018年02期
页码:
206-216
栏目:
山地环境
出版日期:
2018-03-30

文章信息/Info

Title:
Dynamic Change of Lake Area over the Tibetan Plateau and Its Response to Climate Change
文章编号:
1008-2786-(2018)2-206-11
作者:
梁 斌齐 实*李智勇李昱彤陈建辉
北京林业大学 水土保持学院,北京100083
Author(s):
LIANG Bin QI Shi* LI Zhiyong LI Yutong CHEN Jianhui
School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
关键词:
青藏高原 湖泊 动态变化 气候变化
Keywords:
Tibetan Plateau lake dynamic change climate change
分类号:
P343.3
DOI:
10.16089/j.cnki.1008-2786.000316
文献标志码:
A
摘要:
为了探究整个青藏高原湖泊总面积变化的原因,本文利用RS和GIS技术,提取了1960 s-2015年青藏高原大于1 km2的湖泊数据,分析了近50年来青藏高原湖泊面积的动态变化,并结合相应的气象数据,通过相关性分析及回归分析等方法分析了影响湖泊面积变化的主要气象因子。结果表明:(1)青藏高原整体变暖湿的过程中大于1 km2湖泊的总面积呈现增长-减少-加速增长的趋势,从1960 s-2015年共增长了9138.60 km2,增长率为23.90%;(2)100~500 km2级别的湖泊总面积占青藏高原湖泊总面积的比重最大,各不同等级的湖泊总面积总体呈上升趋势;(3)青藏高原4500~5000 m海拔范围内的湖泊总面积最大,海拔4500~5000 m及海拔3000 m以下的湖泊面积变化较剧烈,呈现波动中增长的趋势,其余海拔范围内的湖泊面积基本维持稳定;(4)青藏高原西部地区和北部地区的湖泊总面积总体上呈现增长趋势,东部及南部地区湖泊总面积基本维持稳定,整个青藏高原湖泊面积变化的区域在空间上呈现扩张趋势;(5)年平均气温、年降水量及年蒸发量与湖泊面积呈现显著的相关性,研究区边缘地区湖泊面积和年平均气温有显著相关性,研究区中部地区湖泊面积同年平均气温、年降水量及年蒸发量有显著相关性,而研究区东北部及中西部部分地区湖泊面积和年平均气温及年蒸发量有显著相关性。通过气象因子与湖泊总面积的回归分析结果表明,年平均气温和年蒸发量变化是导致青藏高原湖泊总面积改变的主要原因。本研究填补了青藏高原长时间序列和多尺度的湖泊面积动态变化方面的空白,同时本研究得出的湖泊数据可以为其他研究人员提供一定的帮助。
Abstract:
In order to explore the change of the total area of lakes in the Qinghai0-Tibet Plateau, in this research RS and GIS techniques were used to extract the data of the lakes with areas larger than 1 km2 in the Qinghai-Tibet Plateau from 1960s to 2015, and the dynamic changes of the lake areas over the past 50 years were analyzed.Combined with the relevant meteorological data, it concluded the main meteorological factors affecting the changes of lake areas through the analysis of relevance and regression.The results showed that:(1)in the overall process of warming and humidification of the Qinghai-Xizang Plateau, the total area of lakes greater than 1 km2 showed a trend of increase-decrease-accelerate.From 1960 s to 2015, the total area had increased by 9138.60 km2 with a growth rate of 23.90%.(2)The total area of lakes with areas between 100~500 km2 accounted for the largest proportion in all lakes in the Qinghai-Tibet Plateau.The total area of lakes at different area level generally showed an upward trend.(3)Lakes within the altitude range of 4500~5000 m in the Tibetan Plateau occupied the biggest total area, whereas the lakes within the altitude range of 4500~5000 m and those below 3000 m sea level presented relatively drastic changes in areas, showing an increasing trend with fluctuation.The lakes within the remaining altitude ranges generally remained stable.(4)The total area of the lakes in the western and northern Tibetan Plateau showed an overall growth trend, but in the eastern and southern regions it remained basically stable, and the changes in the entire area of the lakes in the Qinghai-Tibet Plateau revealed a spatial expansion trend.(5)The annual mean temperature, annual precipitation and annual evaporation had a significant correlation with the lake areas.There was a significant correlation between the lake areas and annual average temperature in the border area of the study area.The lake areas in the central area of the study area had a significant correlation with the average temperature, annual precipitation, and annual evaporation.The areas of the lakes in the northeastern part of the study area and part of the central and western regions were significantly correlated with the annual average temperature and annual evaporation.According to the regression analysis on meteorological factors and the total lake area, changes in annual average temperature and annual evaporation were responsible for the changes in the total area of lakes in the Tibetan Plateau.This study fills the research gap on the dynamic changes of lake areas in the Tibetan Plateau from perspective of long time series and multi-scale, and the lake data obtained in this study can provide reference to other researchers.

参考文献/References:

[1] YAO T, Thompson L G, MOSBRUGGER V, et al.Third pole environment(TPE)[J].Environmental Development, 2012, 3: 52-64.
[2] YANG Xiankun, LU Xixi.Drastic change in China's lakes and reservoirs over the past decades [J].Scientific Reports, 2014, 4:6041-6041.
[3] 朱立平, 谢曼平, 吴艳红.西藏纳木错1971-2004年湖泊面积变化及其原因的定量分析[J].科学通报, 2010, 55(18):1789-1798.[ZHU Liping, XIE Manping, WU Yanhong.Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co Basin of the Tibetan Plateau.Chinese Sci Bull, 2010, 55(18): 1294-1303.]
[4] 除多, 普穷, 拉巴卓玛,等.近40a西藏羊卓雍错湖泊面积变化遥感分析[J].湖泊科学, 2012, 24(3):494-502.[CHU Duo, PU Qiong, LABA Zhuoma, et al.Remote sensing analysis on lake area variations of Yamzho Yumco in Tibetan Plateau over the past 40a [J].Journal of Lake Sciences, 2012, 24(3):494-502.]
[5] 刘宝康, 卫旭丽, 杜玉娥,等.基于环境减灾卫星数据的青海湖面积动态[J].草业科学, 2013, 30(2):178-184.[LIU Baokang, WEI Xuli, DU Yue, et al.Dynamics of Qingha Lake area based on environmental mitigation satellite data [J].Pratacultural Science, 2013, 30(2):178-184.]
[6] 拉巴, 边多, 次珍,等.西藏玛旁雍错流域湖泊面积变化及成因分析[J].干旱区研究, 2012, 29(6):992-996.[LA Ba, BIAN Duo, CI Zhen,et al.Study on the change of lake area and its causes in the Mapangyong Co basin in Tibet [J].Arid Zone Research, 2012, 29(6):992-996.]
[7] 边多, 边巴次仁, 拉巴,等.1975-2008年西藏色林错湖面变化对气候变化的响应[J].地理学报, 2010, 65(3):313-319.[BIAN Duo, BIAN Baciren, LA Ba, et al.The response of water level of Selin Co to climate change during 1975-2008 [J].Acta Geographica Sinica, 2010, 65(3):313-319.]
[8] 林乃峰, 沈渭寿, 张慧,等.近35a西藏那曲地区湖泊动态遥感与气候因素关联度分析[J].生态与农村环境学报, 2012, 28(3):231-237.[LIN Naifeng, SHEN Weishou, ZHANG Hui, et al.Correlation degree analysis of meteorological elements and dynamic remote sensing of alpine lakes in Naqu region of Tibet in the past 35 years [J].Journal of Ecology and Rural Environment, 2012, 28(3):231-237.]
[9] 张鑫.基于多源遥感数据的青藏高原内陆湖泊动态变化研究[D].西北农林科技大学, 2015.[ZHANG Xin.Dynamics changes of typical inland lakes on Tibetan Plateau using multi-sensor remote sensing data[D].Northwest A&F University, 2015.]
[10] 姚晓军, 刘时银, 李龙,等.近40年可可西里地区湖泊时空变化特征[J].地理学报, 2013, 68(7):886-896.[YAO Xiaojun, LIU Shiyin, LI Long, et al.Spatial-temporal variations of lake area in Hoh Xil region in the past 40 years [J].Acta Geographica Sinica, 2013, 68(7):886-896.]
[11] LI L, WANG W.The response of lake change to climate fluctuation in north Qinghai-Tibet Plateau in last 30 years[J].Journal of Geographical Sciences, 2009, 19(2): 131-142.
[12] 董斯扬, 薛娴, 尤全刚,等.近40年青藏高原湖泊面积变化遥感分析[J].湖泊科学, 2014, 26(4):535-544.[DONG Siyang, XUE Xian, YOU Quangang, et al.Remote sensing monitoring of the lake area changes in the Qinghai-Tibet Plateau in recent 40 years [J].Journal of Lake Sciences, 2014, 26(4):535-544.]
[13] DOWNING J A.Emerging global role of small lakes and ponds: little things mean a lot [J].Limnetica, 2010, 29(1): 0009-24.
[14] 杨春艳, 沈渭寿, 林乃峰.西藏高原近50年气温和降水时空变化特征研究[J].干旱区资源与环境, 2013, 27(12):167-172.[YANG Chunyan, SHEN Weishou, LIN Naifeng.Spatial and temporal variation characteristics of air temperature and precipitation in Tibet plateau in recent 50 years [J].Journal of Arid Land Resources and Environment, 2013, 27(12):167-172.]
[15] LIU X, CHEN B.Climatic warming in the Tibetan Plateau during recent decades [J].International journal of climatology, 2000, 20(14): 1729-1742.
[16] VERPOORTER C, KUTSER T, SEEKELL D A, et al.A global inventory of lakes based on high-resolution satellite imagery[J].Geophysical Research Letters, 2014, 41(18): 6396-6402.
[7] WEI W, LONG D, YANG H, et al.A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014[J].Scientific Data, 2016, 3.
[18] Science data center of Tibetan Plateau(http://www.tpedatabase.cn)DOI: 10.11888/Lake.tpe.249437.file.
[19] 戴玉凤, 高杨, 张国庆,等.2003-2011年青藏高原佩枯错相对水量变化及其对气候变化的响应[J].冰川冻土, 2013, 35(3):723-732.[DAI Yufeng, GAO Yang, ZHANG Guoqing, et al.Water volume change of the Paiku Co in the southern Tibetan Plateau and its response to climate change in 2003-2011 [J].Journal of Glaciology and Geocryology, 2013, 35(3): 723-732.]
[20] 胡林涓, 彭定志, 张明月,等.雅鲁藏布江流域气象要素空间插值方法的比较与改进[J].北京师范大学学报(自然科学版), 2012, 48(5):449-452.[HU Linjuan, PENG Dingzhi, ZHANG Mingyue, et al.Comparison and improvement of spatial interpolation methods of meteorological elements in the Brahmaputra Basin [J].Journal of Beijing Normal University(Natural Science), 2012, 48(5): 449-452.]
[21] 张强, 阮新, 熊安元.近57年我国气温格点数据集的建立和质量评估[J].应用气象学报, 2009, 20(4):385-393.[ZHANG Qiang, RUAN Xin, XIONG Anyuan.Establishment and quality evaluation of temperature data set in China in recent 57 years [J].Journal of Applied Meteorological Science, 2009, 20(4): 385-393.]
[22] VERPOORTER C, KUTSER T, TRANVIK L.Automated mapping of water bodies using Landsat multispectral data [J].Limnol & Oceanogr.Methods, 2012, 10(12): 1037-1050.
[23] 李均力, 盛永伟, 骆剑承,等.青藏高原内陆湖泊变化的遥感制图[J].湖泊科学, 2011, 23(3):311-320.[LI Junli, SHENG Yongwei, LUO Jiancheng, et al.Remotely sensed mapping of inland lake area changes in the Tibetan Plateau [J].Journal of Lake Sciences, 2011, 23(3):311-320.]
[24] LEI Y B, ZHANG H C, WANG S, et al.Change in lake area of Zigetang Co on Central Tibetan Plateau since the 1970s and its mechanisms[J].Journal of Glaciology and Geocryology, 2009, 31(1): 48-54.
[25] 车涛, 李新, P.K.Mool,等.希夏邦马峰东坡冰川与冰川湖泊变化遥感监测[J].冰川冻土, 2005, 27(6):801-805.[CHE Tao, LI Xin, P K Mool, et al.Monitoring glaciers and associated glacier lakes on the east slopes of mount Xixiabangma from Remote Sensing images [J].Journal of Glaciology and Geocryology, 2005, 27(06):801-805.]
[26] YE Q, KANG S, CHEN F, et al.Monitoring glacier variations on Geladandong mountain, central Tibetan Plateau, from 1969 to 2002 using remote-sensing and GIS technologies [J].Journal of Glaciology, 2006, 52(179):537-545.
[27] LIU J, WANG S Y, YU S M, et al.Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau.[J].Global & Planetary Change, 2009, 67(3-4):209-217.
[28] LIU J, KANG S, GONG T, et al.Growth of a high-elevation large inland lake, associated with climate change and permafrost degradation in Tibet(SCI)[J].Hydrology & Earth System Sciences, 2010, 14(3):481-489.
[29] 鲁安新.青藏高原冰川与湖泊现代变化关系研究[D].中国科学院寒区旱区环境与工程研究所, 2006.[LU Anxin.Study on the relationship between glacier and lake fluctuations in the Qinghai-Tibetan Plateau [D].Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2006.]
[30] 类延斌, 张虎才, 王甡,等.青藏高原中部兹格塘错1970年来的湖面变化及原因初探[J].冰川冻土, 2009, 31(1):48-54.[LEI Yanbin, ZHANG Hucai, WANG Sheng, et al.Change in lake area of Zige Tangco on central Tibetan Plateau since the 1970s and its mechanisms [J].Journal of Glaciology and Geocryology 2009, 31(1):48-54.]

相似文献/References:

[1]蓝永超,胡兴林,丁宏伟,等.河西内陆河流域山区近50余年来气温变化的多尺度特征和突变分析[J].山地学报,2014,(02):163.
 LAN Yongchao,HU Xinglin,DIN Hongwei,et al.Multiple Time Scales Analysis of Jump and Variation of Air Temperature in Mountain Area of Hexi Inland River Basin in the Past More than 50 Years[J].Mountain Research,2014,(02):163.
[2]张宏亮,刘青利,李世杰,等.青藏高原兹格塘错沉积物介形虫壳体同位素[J].山地学报,2014,(03):373.
 ZHANG Hongliang,LIU Qingli,LI Shijie,et al.Holocene Environmental Changes Derived from Ostracode Shell Stable Isotopes in the Sediment Core of Zigetang Lake,Tibetan Plateau[J].Mountain Research,2014,(02):373.
[3]花晓波,阎建忠,刘祥,等.定居牧民对草地退化的适应策略——以那曲县为例[J].山地学报,2013,(02):140.
 HUA Xiaobo,YAN Jianzhong,Liu Xiang(9).Settled Herdsmen’s Adaptation Strategies to Pasture Degradation——Case Study of Naqu County in Tibet Plateau[J].Mountain Research,2013,(02):140.
[4]鲁嘉濠,牛富俊,程花,等.青藏高原工程走廊冻土分布模型及其变化趋势[J].山地学报,2013,(02):226.
 LU Jiahao,NIU Fujun,Cheng Hua,et al.The Permafrost Distribution Model and Its Change Trend of Qinghai-Tibet Engineering Corridor[J].Mountain Research,2013,(02):226.
[5]刘军会,高吉喜,王文杰,等.青藏高原植被覆盖变化及其与气候变化的关系[J].山地学报,2013,(02):234.
 LIU Junhui,GAO Jixi,WANG Wenjie().Variations of Vegetation Coverage and Its Relations to Global Climate Changes on the Tibetan Plateau during 1981—2005[J].Mountain Research,2013,(02):234.
[6]何永涛,石培礼,张宪洲,等.当雄念青唐古拉山脉南坡不同海拔垫状点地梅分布特征[J].山地学报,2013,(06):641.
 HE Yongtao,SHI Peili,ZHANG Xianzhou,et al.Elevational Distribution of Cushion Plant Androsace tapete in the Southern Slope of Nyainqentanglha Mountains, Tibetan Plateau[J].Mountain Research,2013,(02):641.
[7]赵志龙,张镱锂,刘峰贵,等.青藏高原农牧区干旱灾害风险分析[J].山地学报,2013,(06):672.
 ZHAO Zhilong,ZHANG Yili,LIU Fenggui,et al.Drought Disaster Risk Analysis of Tibetan Plateau[J].Mountain Research,2013,(02):672.
[8]陈有超,鲁旭阳,李卫朋,等.藏北典型高寒草原土壤微气候对增温的响应[J].山地学报,2014,(04):401.
 CHEN Youchao,LU Xuyang,LI Weipeng,et al.Response of Soil Microclimate to Warming in Alpine Steppe, Northern Tibetan Plateau[J].Mountain Research,2014,(02):401.
[9]姜永见,李世杰,沈德福,等.青藏高原江河源区近40年来气候变化特征及其对区域环境的影响[J].山地学报,2012,(04):461.
 JIANG Yongjian,LI Shijie,SHEN Defu,et al.Climate Change and Its Impact on the Regional Environment in the Source Regions of the Yangtze, Yellow and Lantsang Rivers in Qinghai-Tibetan Plateau during 1971—2008[J].Mountain Research,2012,(02):461.
[10]赵尚民,周成虎,程维明,等.青藏高原西北缘地形抬升速率与地质年代的关系[J].山地学报,2011,(05):616.
 ZHAO Shangmin,,et al.Relationships between Topographic Uplifting Velocity and Geological Times for the Northwestern Edge of Qinghai-Tibet Plateau[J].Mountain Research,2011,(02):616.

备注/Memo

备注/Memo:
收稿日期(Received date):2016-11-30; 改回日期(Accepted date):2018-1-10
基金项目(Foundation item):水利部公益性行业科研专项(2030311)。 [Special Funds for Public Welfare Industry Research Projects of the Ministry of Water Resources of the People's Republic of China(2030311).]
作者简介(Biography):梁斌(1992-),男,硕士研究生,河北衡水人,主要从事水土流失及地理信息系统方面的研究。[LIANG Bin(1992-), male, Postgraduates, born in Hebei Hengshui person, engaged in study of water and soil loss and GIS.] E-mail: 1509030398@qq.com
*通讯作者(Corresponding author):齐实(1964-),男,教授,陕西西安人,主要从事流域治理方面的教学与研究。[QI Shi(1964-), male, professor, bron in Shanxi Xi'an, specialized in teaching and studying in watershed management.] E-mail: qishi@bjfu.edu.cn
更新日期/Last Update: 2018-03-30