[1]陈建珍,何 超,寇卫利.高山峡谷地区遥感图像地形校正[J].山地学报,2016,(05):623-631.[doi:10.16089/j.cnki.1008-2786.000170]
 CHEN Jianzhen,HE Chao,KOU Weili.Topographic Correction of Remote Sensing Image at High Mountain and Gorge Regions[J].Mountain Research,2016,(05):623-631.[doi:10.16089/j.cnki.1008-2786.000170]
点击复制

高山峡谷地区遥感图像地形校正()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2016年05期
页码:
623-631
栏目:
山地信息技术
出版日期:
2016-09-30

文章信息/Info

Title:
Topographic Correction of Remote Sensing Image at High Mountain and Gorge Regions
文章编号:
1008-2786-(2016)5-623-09
作者:
陈建珍1何 超2寇卫利3
1.西南林业大学 林业调查规划设计研究院,云南 昆明 650224;
2.西南林业大学 林业3S技术工程研究中心,云南 昆明 650224;
3.西南林业大学 计算机与信息学院,云南 昆明 650224
Author(s):
CHEN Jianzhen1HE Chao2KOU Weili3
1.Forestry Survey Planning Design Institute, Southwest Forestry University, Kunming 650224, China;
2.Forestry 3S Technology Engineering Research Center, Southwest Forestry University, Kunming 650224, China;
3.College of Computer and Information, Southwest Forestry University, Kunming 650224, China
关键词:
高山峡谷地区 地形效应 地形校正
Keywords:
high mountain and gorge regions topographic effect topographic correction
分类号:
TP75
DOI:
10.16089/j.cnki.1008-2786.000170
文献标志码:
A
摘要:
为获得适用于高山峡谷地区遥感图像地形校正的方法,以滇西高山峡谷地区为研究区,在6景Landsat-5 TM图像和SRTM-1数据的基础上,采用C校正、Teillet-回归、SCS+C校正、Minnaert校正、b校正和VECA校正进行对比实验。从目视效果看,C校正、Teillet-回归、b-II校正和VECA校正结果的亮度与校正前基本一致; 在地形阴影严重地区,SCS+C校正出现过校正,b-I校正出现校正不足,Minnaert校正结果较暗且像元值为空,C校正和VECA校正出现彩色合成异常。从标准差看,Teillet-回归、b-I校正和b-II校正结果的标准差小于校正前; Minnaert校正结果的标准差大于校正前; C校正和VECA校正在TM1-3和高太阳高度角TM4上校正结果的标准差小于校正前,在TM5、TM7和低太阳高度角TM4上校正结果的标准差大于校正前; SCS+C校正在TM1-3、TM4和高太阳高度角TM7上校正结果的标准差小于校正前,在TM5和低太阳高度角TM7上校正结果的标准差大于校正前。从分散指数看,b-II校正在31个波段上的分散指数最小,占波段总数的86.11%。结果表明:C校正、SCS+C校正、Minnaert校正、b-I校正和VECA校正不宜用于高山峡谷地区遥感图像的地形校正; Teillet-回归和b-II校正可用于高山峡谷地区遥感图像的地形校正,相比之下,b-II校正的效果优于Teillet-回归。
Abstract:
In order to obtain suitable method to correct topographic effect in remote sensing image at high mountain and gorge regions,comparison tests were conducted by using C correction, Teillet-regression, SCS+C correction, Minnaert correction, b correction and VECA correction, based on 6 scenes Landsat-5 TM images and SRTM-1 data from high mountain and gorge regions in western Yunnan. From the perspective of visual effect, the brightness of C correction, Teillet-regression, b-II correction and VECA correction images were basically identical with the original images. At the severe topographic effect areas, the SCS+C correction led to overcorrection; the b-I correction caused under-correction; the Minnaert correction created dark pixels with the null value; C correction and VECA correction caused color composite anomaly. From the perspective of standard deviation,the standard deviations of Teillet-regression, b-I correction and b-II correction images were less than that of original images. The standard deviations of Minnaert correction images were greater than that of original images. After corrected by C correction and VECA correction, the standard deviations of TM1-3 and the high sun elevation angle TM4 were less than that of original images, the standard deviations of TM5, TM7 and the low sun elevation angle TM4 were greater than that of original images. After corrected by SCS+C correction, the standard deviations of TM1-3, TM4 and the high sun elevation angle TM7 were less than original images, and the standard deviations of TM5 and low sun elevation angle TM7 were greater than original images. From the perspective of dispersion indices, the dispersion indices of b-II correction done images were the smallest in 31 bands, accounting for 86.11% of total band. The results show that C correction, SCS+C correction, Minnaert correction, b-I correction and VECA correction are not suitable for correction topographic effect in remote sensing image at high mountain and gorge regions. Teillet-regression and b-II correction can be used to correct topographic effect in remote sensing image of high mountain and gorge regions. In contrast, the effect of b-II correction is better than Teillet-regression.

参考文献/References:

[1] Holben B N, Justice C O. The topographic effect on spectral response from nadir-pointing sensor [J]. Photogrammetric Engineering and Remote Sensing, 1980, 46(9): 1191-1200
[2] Li Yingcheng. Analysis and correction technique of topographic effect in digital remote sensing image [J]. Beijing Surveying and Mapping, 1994,(2): 14-19[李英成. 数字遥感影像地形效应分析及校正[J]. 北京测绘, 1994,(2): 14-19]
[3] Civco D L. Topographic normalization of Landsat thematic mapper digital imagery [J]. Photogrammetric Engineering and Remote Sensing, 1989, 55(9): 1303-1309
[4] Hoblen B, Justice C. An examination of spectral band ratioing to reduce the topographic effect on remotely sensed data [J]. International Journal of Remote Sensing, 1981, 2(2): 115-133
[5] Pouch G W, Campagna D J. Hyperspherical direction cosine transformation for separation of spectral and illumination information in digital scanner data [J]. Photogrammetric Engineering and Remote Sensing, 1990, 56(4): 475-479
[6] Sandmeier S, Itten K I. A physically-based model to correct atmospheric and illumination effects in optical satellite data of rugged terrain [J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 708-717
[7] Wu Ruidong. Correcting satellite imagery for topographic effects[J].Remote Sensing Information,2005,4:31-34[武瑞东.卫星遥感影像数据的地形影响校正[J]. 遥感信息, 2005, 4: 31-34]
[8] Shi Di, Yan Gangjian, Mu Xihan. Optical remote sensing image apparent radiance topographic correction physical model [J]. Journal of Remote Sensing, 2009, 13(6): 1039-1046[史迪, 阎广建, 穆西晗. 光学遥感影像表观辐亮度地形效应纠正物理模型[J]. 遥感学报, 2009, 13(6): 1039-1046]
[9] Teillet P M, Guindon B, Goodenough D G. On the slope-aspect correction of multispectral scanner data [J]. Canadian Journal of Remote Sensing, 1982, 8(2): 1537-1540
[10] Vincini M, Reeder D, Frazzi E. An empirical topographic normalization method for forest TM data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002: 2091-2093
[11] Yongnian Gao, Wanchang Zhang. A simple empirical topographic correction method for ETM+ imagery [J]. International Journal of Remote Sensing, 2009, 30(9): 2259-2275
[12] Nichol J, Hang L K and Sing W M. Empirical correction of low sun angle images in steeply sloping terrain: a slope-matching technique [J]. International Journal of Remote Sensing, 2006, 27(3): 629-635
[13] Soenen S A, Peddle D R, Coburn C A. SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain [J]. IEEE Transaction on Geoscience and Remote Sensing, 2005, 43(9): 2148-2159
[14] Smith J A, Lin T L, Ranson K J. The lambertian assumption and landsat data [J]. Photogrammetric Engineering and Remote Sensing, 1980, 46(9): 1183-1189
[15] Ekstrand S. Landsat TM-based forest damage assessment: correction for topographic effects [J]. Photogrammetric Engineering and Remote Sensing, 1996,(2): 151-161
[16] Dengsheng Lu, Hongli Ge, Shizhen He, et al. Pixel-based Minnaert Correction method for reducing topographic effects on a Landsat 7 ETM+ image [J]. Photogrammetric Engineering and Remote Sensing, 2008, 74(11): 1343-1350
[17] He Chao, Yue Cairong, Chen Jianzhen, et al. Terrain correction of India remote sensing satellite image [J]. Journal of Northeast Forestry University, 2007, 25(7): 59-60, 63[何超, 岳彩荣, 陈建珍, 等. IRS遥感卫星图像地形校正[J]. 东北林业大学学报, 2007, 25(7): 59-60, 63]
[18] Mishra V D, Sharma J K, Singh K K, et al. Assessment of different topographic corrections in AWiFS satellite imagery of Himalaya terrain [J]. Journal of Earth System Science, 2009, 118(1): 11-26
[19] Richter R, Kellenberger T, Kaufmann H. Comparison of topographic correction methods [J]. Remote Sensing, 2009, 1(3): 184-196
[20] Hantson S, Chuvieco E. Evaluation of different topographic correction methods for Landsat imagery [J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(5): 691-700
[21] Wang Sa, Li Xi, Zhang Qi, et al. Analysis on the applicability of the topographic correction models for Landsat images [J]. Journal of Hua Zhong Normal University:Nation Science, 2013, 47(4): 571-577[王飒, 李熙, 张奇, 等. Landsat影像地形校正方法的适用性分析. 华中师范大学学报:自然科学版, 2013,(4): 571-577]
[22] Ghasemi N, Mohammadzadeh A, Sahebi M R. Assessment of different topographic correction methods in ALOS AVNIR-2 data over a forest area [J]. International Journal of Digital Earth, 2013, 6(5): 504-520
[23] Gao Yongnian, Zhang Wanchang. Comparison test and research progress of topographic correction on remotely sensed data [J]. Geographical Research, 2008, 27(2): 467-477[高永年, 张万昌. 遥感影像地形校正研究进展及其比较实验[J]. 地理研究, 2008, 27(2): 467-477]
[24] Mu Yue, An Yulun, Wang Zhe, et al. Comparison of different topographic correction models for surface reflectance calculating in rugged terrain area [J]. Mountain Research, 2014, 32(3): 257-266[穆悦, 安裕伦, 王喆等. 不同地形校正模型计算地形复杂山区地表反射率的对比[J]. 山地学报, 2014, 32(3): 257-266]
[25] Duan Saixian, Shi Kun, Lu Zuoying. Research on topographic correction of remotely sensed image in rugged terrain areas based on SRTM3 [J]. Science Technology and Engineering, 2012, 12(31): 8147-8153[段赛仙,施昆,卢作英. 基于SRTM3的山区遥感影像地形校正研究[J]. 科学技术与工程, 2012, 12(31): 8147-8153]
[26] Law K H, Nichol J. Topographic Correction for Differential Illumination Effects on Ikonos Satellite Imagery [J/OL].
[2015-03-29]. http://www.isprs.org/proceedings/XXXV/congress/comm3/papers/347.pdf
[27] Riaño D, Chuvieco E, Salas J, et al. Assessment of Different Topographic Corrections in Landsat-TM Data for Mapping Vegetation Types [J]. IEEE Transcations on Geoscience and Remote Sensing, 2003, 41(5): 1056-1061
[28] Huang Bo, Xu Lihua. Applied research of topographic correction based on the improved Minnaert model [J].Remote Sensing Technology and Application, 2012,27(2): 183-189[黄博, 徐丽华. 基于改进型Minnaert地形校正模型的应用研究[J]. 遥感技术与应用, 2012, 27(2): 183-189]
[29] Yongnian Gao, Wanchang Zhang. LULC classification and topographic correction of landsat-7 ETM+ imagery in the Yangjia river watershed: the influence of DEM Resolution [J]. Sensors, 2009(9): 1980-1995

相似文献/References:

[1]孟 清,白红英*,赵婷,等.秦岭山地气候变化的地形效应[J].山地学报,2020,(2):180.[doi:10.16089/j.cnki.1008-2786.000500]
 MENG Qing,BAI Hongying*,ZHAO Ting,et al.Topographic Characteristic of Climate Change in the Qinling Mountains, China[J].Mountain Research,2020,(05):180.[doi:10.16089/j.cnki.1008-2786.000500]

备注/Memo

备注/Memo:
收稿日期(Received date):2015-03-31; 改回日期( Accepted):2015-06-15。
基金项目(Foundation item):云南省森林灾害预警与控制重点实验室开放基金项目(ZK150001); 西南林业大学科学研究基金项目(111131); 国家自然科学基金项目(31400493; 31260156)。[Forest Disaster Warming and Control Key Laboratory(ZK150001); Foundation of Southwest Forestry University(111131),and National Natural Science Foundation of China(31400493; 31260156).]
作者简介(Biography):陈建珍(1980-),女(汉),广东连州人,硕士,讲师,主要从事森林测计和林业遥感研究。[Chen Jianzhen(1980-),female,born in Lianzhou,Guangdong,M.Sc., lecturer,interested in forest mensuration and forest remote sensing.] E-mail:31362197@qq.com
更新日期/Last Update: 2016-09-30