文章编号: 1008 - 2786 - (2020)1 - 062 - 11 DOI:10.16089/j.cnki.1008 - 2786.000491

地下水封洞库施工巷道开挖对仰坡稳定性的影响规律

曹洋兵^{1,2,3},程志伟^{1,3},黄真萍^{1,2,3*},詹淦基^{1,3}

(1. 福州大学 环境与资源学院,福州 350116;
2. 国土资源部 丘陵山地地质灾害防治重点实验室(福建省地质灾害重点实验室),福州 350116;
3. 地质工程福建省高校工程研究中心,福州 350116)

摘 要: 巷道或隧道开挖对洞口仰坡稳定性有重要影响,处理不慎极易酿成工程事故。以山东某地下水封洞库施 工巷道洞口风化花岗岩仰坡为研究对象,基于离散元模拟和监测数据,选取仰坡最大位移、塑性区体积及稳定系数 作为评价指标,研究了巷道开挖进尺、断面尺寸及 W 值(上覆地层厚度与巷道跨度之比)对仰坡稳定性的影响。结 果表明:随着开挖进尺的增加,坡面最大位移增长速率呈匀速一加速一稳定的变化规律,塑性区体积不断增大,且 开挖断面越大,位移、塑性区增长速率越大;仰坡稳定系数随进尺的增加先降低后趋于稳定,且断面尺寸越大其降 低速率和幅度越大,最终降低幅度为 6.9%~27.6%;随着 W 值增大,仰坡稳定系数先降低后趋于稳定,降低速率随 断面尺寸增大而增大,根据特定断面下稳定系数降低速率不同,将关系曲线划分为骤降区、缓降区、陡降区和平稳 区。研究结论可为类似工程洞口段划分、施工及稳定性评价提供参考。

关键词: 巷道开挖;巷道断面;风化花岗岩;边坡仰坡;洞口段

中图分类号: U45 文献标志码: A

地下水封洞库是一种利用洞室防护性、热稳定 性和地下水的密封性存储石油或液化石油气的新颖 工程形式,其本质是由洞室、施工巷道、竖井、连接巷 道和水幕巷道等组成的大型复杂洞室群。当前,我 国该类工程基本都处于花岗岩地层,由此产生施工 巷道开挖诱发风化花岗岩仰坡破坏失稳问题。同 时,风化花岗岩斜坡也是我国东南沿海地区广泛分 布的危害性极大的斜坡类型,针对该类斜坡在坡面 及坡脚开挖^[1-3]、降雨^[4-5]、振动^[6]及软弱结构面^[7] 等因素作用下的变形破坏特征、规律及稳定性评价 等方面已取得重要成果,深化了对此类斜坡的认识, 但对于坡体内部巷道或隧道开挖下的风化花岗岩仰 坡稳定性演化特征和规律研究极少,特别是对巷道 或隧道断面尺寸、开挖进尺及上覆地层厚度等因素 的影响规律尚认识有限,极易酿成工程事故。因此, 开展施工巷道开挖条件下风化花岗岩仰坡稳定性演 化研究具有重要的理论和实践意义。

目前,针对基础设施建设过程中巷道或隧道 开挖对明槽边坡、洞顶仰坡的影响已有大量研究, 尽管此类边仰坡不属于风化花岗岩地质结构,但 对本文的研究仍具有一定参考价值。基于实际工 程案例,按照施工过程力学原理进行隧道或巷道

* 通讯作者(Corresponding author):黄真萍(1965 -),女,硕士,教授,主要研究方向:工程地质物探技术。[HUANG Zhenping (1965 -), female,
 M. Sc., professor, research on geophysical exploration technology] E-mail: zhphuang@126.com

收稿日期(Received date):2019-07-23;修回日期(Accepted date):2020-01-01

基金项目(Foundation item):福建省自然科学基金项目(2019J05036);国土资源部丘陵山地地质灾害防治重点实验室(福建省地质灾害重点实验室)开放基金项目(FJKLGH2017K004,FJKLGH2017K002);岩土钻掘与防护教育部工程研究中心开放基金项目(201702)。[Fujian Province Natural Science Foundation (2019J05036); Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Land and Resources (Fujian Key Laboratory of Geohazard Prevention) (FJKLGH2017K004, FJKLGH2017K002); Open Fund of Engineering Research Center of Ministry of Education (201702)]

作者简介(Biography):曹洋兵(1987-),男,博士,副教授,主要研究方向:岩质边坡稳定性评价及地下水封洞库工程。[CAO Yangbing (1987-), male, Ph. D. associate professor, research on rock slope stability evaluation and underground water-sealed cavern] E-mail: ybcao@fzu.edu.cn.

开挖过程的三维数值模拟,并以重分布应力、最大 位移、塑性区体积等作为稳定性评价指标,研究隧 道或巷道开挖对洞口边仰坡影响规律是目前主要 思路^[8-13]。此外,朱合华等^[14]引入强度折减法, 研究边仰坡稳定系数随隧道动态施工过程的演化 特征,发现随施工进行稳定系数逐步减小并最终 趋于稳定;方建勤等^[15]将极限平衡分析法与有限 元法相结合,研究洞口边坡的稳定性演化特征。 综上,目前的研究主要针对工程实例,相关成果具 有特定适用条件,难以直接推广应用,同时一些关 键因素对边仰坡稳定性的影响特征、规律也未得 到较好研究。考虑到巷道或隧道与仰坡是相互作 用的地质系统,涉及地下工程深浅埋转换、围岩压 力-滑坡推力协同作用等问题,因而极有必要进 一步深入研究。

本文以山东某地下水封洞库施工巷道洞口风化 花岗岩仰坡为研究对象,基于勘察、测试与监测数 据,首先检验了3DEC 离散元分析程序及参数设置 的可靠性。基于此,研究了巷道断面尺寸、开挖进尺 及上覆地层厚度与巷道跨度的比值等关键因素对仰 坡稳定性影响特征和规律,得出了可用于指导工程 实践的结论,能为类似工程提供有益参考。

1 数值模拟概况及可靠性检验

根据详勘报告,该地下水封洞库工程场地位于 山东半岛中部,属低山丘陵地貌,地形中间高、东西 两侧低、北高南低。建库区域内分布着强风化、中风 化和微风化中粗粒黑云二长花岗岩,无大型地质构 造。其中,强风化层层底高程为 66.83~78.87 m, 平均厚度14m,节理发育,岩石强度低;中风化层层 底高程为 66.34~73.35 m,平均厚度 4 m,节理较发 育,岩石强度中等;微风化层未完全揭露,节理稍发 育,岩石强度高。地下水主要赋存于强风化层及中 风化层浅部,水位高程为73~83.43 m,埋深为8~ 16.4 m,富水性差,径流条件较好,随着洞口区域开 挖施工,洞口段水位不断下降,地下水逐渐消散。该 施工巷道开挖前,首先对场地进行整平,再开挖进洞 明槽,形成两级边仰坡,其中一级边仰坡高12 m、坡 率1:0.5,二级边仰坡高8m、坡率1:1,两级边仰坡 间留有2m宽的马道。巷道洞口区域的工程地质剖 面图如图1所示。

1.1 数值模型

该洞库工程的施工巷道为直墙圆拱形,巷道口 附近的巷道高度 9.65 m、跨度 10.4 m(高跨比为 0.93),底板坡率为 8%。依托 3DEC 离散元分析平 台,基于上述施工巷道及边仰坡的工程地质条件构 建其数值模型(图 2),设置剖分尺寸为 3 m,共有 228 844 个四面体网格单元。其中,研究区风化花岗 岩所含的数量庞大的节理以岩体力学参数等效的方 式进行考虑,在数值模型中不再构建此类结构面。

1.2 风化花岗岩及分层界面力学参数

对于岩体等效力学参数,首先通过 Hoek-Brown 强度准则和 Q 分类进行估算,再通过现场监测数据 对此进行检验和修正,并最终确定计算参数。

Hoek-Brown 强度准则^[16]公式如下:

$$\sigma'_{1} = \sigma'_{3} + \sigma_{ci} \left(m_{b} \frac{\sigma'_{3}}{\sigma'_{1}} + s \right)^{a}$$
(1)

式中, σ'_1 、 σ'_3 分别为岩体破坏时的最大主应力和最 小主应力(MPa); σ_{ai} 为岩石饱和单轴抗压强度 (MPa)(根据详勘报告确定,见表1); m_b 、s和 a 通过 下式计算可得:

$$\begin{cases} m_b = m_i \exp\left(\frac{GSI - 100}{28 - 14D}\right) \\ s = \exp\left(\frac{GSI - 100}{9 - 3D}\right) \\ a = \frac{1}{2} + \frac{1}{6} \left(e^{-GSI/15} - e^{-20/3}\right) \end{cases}$$
(2)

式中, GSI 为地质强度指标; m_i 为岩石材料常数, 不同风化岩体 m_i 取值基于 Hoek 的建议值^[17-18], 并参考 Basarir 等^[19]、吴顺川等^[20]的研究成果, 见表 1; D 为岩体受应力释放、爆破损伤等作用的扰动系数, 本 次取 0。Hoek 提出^[21], 假定地下水影响系数 J_w 以

图 2 研究对象数值模型图:(a)整体数值模型及尺寸;(b)施工巷道开挖后数值模型 Fig.2 Numerical model of the study object

(a) Overall numerical model and dimensions; (b) Numerical model of construction roadway after excavation

及应力折减系数 SRF 均为1时,GSI 和 Q 值有如下 关系:

$$GSI = 9\ln Q' + 44\left(Q' = \left(\frac{RQD}{J_n}\right)\left(\frac{J_r}{J_a}\right)\right) \quad (3)$$

式中, RQD 为岩石质量指标; J_n 为节理的组数系数; J_n 为节理的粗糙度系数; J_a 为节理风化蚀变系数。 详勘及现场监测资料表明:施工巷道内出水点水量 每分钟小于 5 L 时 J_w 取 1;巷道洞口段不处于高地 应力区, SRF 取 1。因此,由式(3)可建立起 GSI 与 Q 值的关联。另外,根据洞口段施工巷道详勘资料 和开挖素描图,通过 Q 分类法,进行围岩质量分级: 强风化花岗岩层 0.01 $\leq Q < 0.1$,中风化花岗岩层 $0.1 \leq Q < 1$,微风化花岗岩层 $1 \leq Q < 4$ 。本文从安 全角度选取 Q 值范围的下限用于计算,确定的各类 风化花岗岩 GSI 值见表 1(按 Hoek 等的建议,当 $GSI \leq 5$ 时,统一取为 5)。

表 1 不同风化程度花岗岩 Hoek-Brown 准则参数表

Tab. 1 Parameters of Hoek-Brown criterion for different weathering granite

岩体类型	Q值范围	<i>Q</i> 值	$\sigma_{\scriptscriptstyle ci}/{ m MPa}$	m_i	D	GSI
强风化	$0.01 \! \leqslant \! Q \! < \! 0.1$	0.01	25	4	0	5
中风化	$0.1\!\leq\!Q<\!1$	0.1	35	15	0	30
微风化	$1 \leq Q < 4$	1	60	20	0	45

岩体的等效内聚力 c'、内摩擦角 φ'可通过下式 获得:

$$\begin{cases} c' = \frac{\sigma_{ci} \left[(1+2a)s + (1-a)m_b \sigma'_{3n} \right] (s+m_b \sigma'_{3n})^{a-1}}{\left[(2+a)(1+a)\sqrt{1 + \left[6am_b (s+m_b \sigma'_{3n})^{a-1} \right]} \right]} \\ \varphi' = \sin^{-1} \left[\frac{6am_b (s+m_b \sigma'_{3n})^{a-1}}{2(1+a)(2+a) + 6am_b (s+m_b \sigma'_{3n})^{a-1}} \right] \end{cases}$$

$$(4)$$

其中,

$$\sigma'_{3n} = \sigma'_{3max} / \sigma_{ci} \tag{5}$$

对于边坡工程,有:

$$\begin{cases} \sigma'_{3n} = \frac{\sigma'_{3max}}{\sigma_{ci}} = 0.72 \left(\frac{\sigma'_{cm}}{\gamma H}\right)^{-0.91} \\ \sigma'_{cm} = \sigma_{ci} \frac{\left[m_b + 4s - a(m_b - 8s)\right](m_b/4 + s)^{a-1}}{2(1 + a)(2 + a)} \end{cases}$$
(6)

式中, γ 为岩体容重(MN/m³);H为坡高(m); σ'_{cm} 为岩体的单轴抗压强度(MPa)。

通过上述围岩质量转换式和参数估算式,可初 步获得不同风化程度花岗岩力学参数。同时,笔者 也通过国标 BQ 法^[22]并行地开展了岩体质量分级, 获得了不同风化程度岩层 BQ 值,并由此对基于 Q 分类和 Hoek-Brown 强度准则估算的等效岩体力学 参数进行适当调整(使其在文献[22]给出的建议值 范围内),最终确定的参数见表 2。

本次离散元模拟重点考虑不同风化花岗岩分层 界面的力学效应,采用库伦滑动本构模型进行刻画, 力学参数通过详勘报告获取,由于分层界面并非完 全连续贯通,呈现一定的压实胶结特征,故具有一定 的抗拉强度,在法向刚度和切向刚度取值上考虑一 定的泊松效应,最终分层界面力学参数取值见表3。

表 2 不同风化程度花岗岩物理力学参数表

Tab. 2 Physical and mechanical parameters of different weathering granite

岩体 类型	密度 /(kg・m ⁻³)	弹模 /GPa	洎松比	内聚力 /kPa	内摩 擦角 /°	抗拉 强度 /kPa
强风化	2200	0.38	0.35	30	26	5.60
中风化	2450	1.87	0.30	200	35	11.90
微风化	2500	5.80	0.27	700	42	47.40

由于施工巷道洞口段临近地表,初始地应力主要由重力引起,故本次数值模拟在自重作用下进行。按照实际的施工巷道开挖顺序和循环进尺进行开挖 模拟,其中第1段开挖5.5m,其后每段4m,本次共 开挖12段。

1.3 可靠性检验

为了检验模型和参数的可靠性,以下将数值计 算结果与多源监测资料进行对比分析。

1.3.1 开挖支护方案及参数设置

洞口边仰坡锚喷支护方案:Φ42.3 mm × 3.25 mm管式锚杆,长6 m、间距1.5 m×1.5 m,梅 花形布置;C25 喷射混凝土,一级边仰坡及马道喷 10 cm,二级边仰坡喷15 cm,内置Φ6.5 钢筋网,网 格尺寸15 cm×15 cm,见图3。

洞口段施工巷道在开挖前均施作如下预支护: Φ 42.3 mm×3.25 mm 管式锚杆,长6m,纵环间距 4.0m×0.5m,每开挖4m施作一次超前预支护,确 保巷道后续开挖支护作业在预支护下进行。洞口段 施工巷道锚喷支护方案: Φ 42.3 mm×3.25 mm 管式 锚杆,长3m、纵环间距0.5m×1.0m,梅花形布置; C25喷射混凝土,边墙和拱顶喷25 cm,内置 I20a型 钢拱架,间距0.5m,并挂 Φ 6.5钢筋网,网格尺寸 15 cm×15 cm,底板为30 cm 厚 C25 浇筑混凝土,见 图3。 由上可知,洞口段施工巷道和边仰坡均采用 Φ42.3 mm×3.25 mm 管式锚杆,据规范^[23]可确定 其模拟参数(表4),其中粘结刚度参考类似工程锚 杆现场试验结果确定。

洞口段施工巷道和边仰坡均采用 C25 喷射混 凝土,其中巷道施加的间距 0.5 m、I20a 型钢拱架通 过变形等效原理,按面积占比将其力学效应等效地 考虑到喷射混凝土中,据此并参考规范^[23]可确定喷 射混凝土的变形参数见表 5,喷射混凝土与不同风 化花岗岩接触面的力学参数见表 6。

对于施工巷道的预支护,根据管式锚杆上倾角 度及实际监测的浆液扩散数据,本次将其超前支护 效果采用如下方式考虑:设置1.5 m 厚的围岩加固 圈,将圈内围岩力学参数提高一个质量等级(如原 为强风化则提高为中风化)。

1.3.2 可靠性分析

根据上述程序设置,按照洞口段施工巷道及边仰坡真实开挖支护方案进行数值模拟。计算结果表明:模型最大位移小于 3 mm(图 4),其中边仰坡变形主要集中在一级边仰坡表层的强一中风化交界处,最大位移为 2.78 mm,巷道口顶部地表沉降呈漏斗状,最大沉降量1.75 mm;锚杆轴力均较小

表 3 不同风化程度花岗岩分层界面力学参数表

Tab. 3	Mechanical	parameters of	stratified	interface	between	different	weathering	granit
100.5	meenumeur	parameters of	Stratificu	internace	Detween	unicient	weathering	Siamo

力学指标	法向刚度/(GPa・m ⁻¹)	切向刚度/(GPa・m ⁻¹)	内摩擦角/°	内聚力/kPa	抗拉强度/kPa
强一中风化界面	0.60	0.40	22	25	5
中一微风化界面	1.80	0.90	32	100	10

(图5),所承受的最大受拉轴力为 13.6 kN,个别区 域出现了受压达 5 kN 的轴力。经与现场关键点的 表层变形、锚杆轴力等监测数据对比发现,数值计算 值与现场监测值吻合程度较高(表7),证实了上述 模型及参数的可靠性,可用于后续巷道开挖对边仰 坡稳定性影响规律研究。

表 4 管式锚杆的数值模拟参数表

Tab. 4 Numerical simulation parameters of tubular bolt

材料	参数	取值
	截面积/m ²	3.987×10^{-4}
644 AT 144	弹性模量/GPa	210
锚杆件	抗压力/kN	135
	抗拉力/kN	135
动物体	粘结强度/(N・m ⁻¹)	1.52×10^{5}
眇永忰	粘结刚度/(N・m ⁻¹)	5.95×10^{8}

表 5 C25 喷射混凝土变形参数表

Tab. 5 Deformation parameters of C25 shotcrete

材料	弹性模量/GPa	泊松比
C25	28	0.21
C25 ^①	58	0.20

注:① 含间距 0.5 m 的 I20a 型钢拱架。

表 6 喷射混凝土与风化花岗岩接触面力学参数表

Tab. 6 Mechanical parameters of contact surface

between shotcrete and weathered granite

岩体 类型	法向刚度 /(GPa・m ⁻¹)	切向刚度 /(GPa・m ⁻¹)	粘聚力 /MPa	内摩 擦角 /°	抗拉 强度 /MPa
强风化	11	6	2.50	43	1.43
中风化	15	8	2.70	45	1.68
微风化	18	11	2.90	47	1.80

Fig. 4 Displacement diagram of tunnel-slope system under excavation and support

图 5 施工巷道一边仰坡体系锚杆轴力图

Fig. 5 Bolt axial force diagram of tunnel-slope system

表 7 关键监测点的监测值与计算值对比表

Tab. 7 Comparison of monitoring and calculating

values of key monitoring points

对比参量	计算值	监测值
边仰坡关键点位移/mm	2.75	3
距洞口 5.5m 收敛位移/mm	3	2.80
距洞口 5.5m 沉降位移/mm	1.50	1.40
地表关键点沉降/mm	1.75	1.50
边仰坡关键点锚杆轴力/kN	5.08	5
距洞口 5.5m 锚杆轴力/kN	6	5.50

2 关键影响因素的研究方案

为研究洞口段巷道开挖对边仰坡稳定性的影响 规律,本文选取巷道断面尺寸、开挖进尺、巷道上覆 地层厚度 H 与巷道跨度 B 的比值 W(即 W = H/B)作为影响边仰坡稳定性的关键因素,在边仰坡和洞 口段巷道均无支护情况下,研究边仰坡变形破坏及 稳定性演化规律。其中,由于地下水封洞库施工巷 道的功能是满足洞室施工掘进过程中出渣、通风、给 排水、人员和设备通行等要求,其断面形状为直墙圆 拱形,断面跨度一般为9~11 m,具有相对固定的高 跨比(本文为0.93,其它地下水封洞库施工巷道的 高跨比也与此相当),故采用将现有断面尺寸乘以 缩放系数以获取4种断面尺寸方案(表8)。开挖进 尺与原开挖方式相同(第1段5.5m,其后每段4m, 共开挖12段,未挖穿模型),同样为全断面开挖法。 由此,W值随地形、断面尺寸及开挖进尺等参量的 变化而变化。

Tuble 1	coouron sonome or tunner	section one
断面尺寸	高度/m	跨度/m
0.8 <i>D</i>	7.72	8.32
0.9 <i>D</i>	8.68	9.36
1 <i>D</i>	9.65	10.40
1.1D	10.62	11.44

每段开挖后,为评价边仰坡的变形破坏及稳定 性,选取坡面最大位移、塑性区体积、稳定系数三者 作为评价指标,其中稳定系数采用强度折减法^[24]获 取:

$$\begin{cases} c' = \frac{c}{F} \\ \varphi' = \arctan\left(\frac{\tan\varphi}{F}\right) \end{cases}$$
(7)

其中,c和 ϕ 为折减前岩土体的粘聚力和内摩擦角; c'和 φ' 为折减后其对应参数; F为折减系数。

目前判断边坡失稳的判据主要有3种^[24-26]:计 算不收敛,等效塑性应变(或塑性区、广义塑性应 变)从坡脚到坡顶贯通,特征部位位移突变。笔者 反复试算发现,以计算不收敛作为失稳判据,计算结 果往往偏大,采用等效塑性应变贯通,人为判定存在 较大误差,而采用关键点位移突变作为判据的效果 较好。在位移突变的判定上,以位移一折减系数曲 线斜率作为量化指标,当斜率突变时,即代表位移突 变,并以此确定临界折减系数(稳定系数)。

3 巷道开挖对仰坡稳定性影响规律

施工巷道的明槽开挖后,基于强度折减法,绘制 两相邻折减系数内位移增量(ΔS)/两相邻折减系数 差值(ΔF)与折减系数(两相邻折减系数中的较小 值)关系曲线,如图6所示。由图可知,折减系数达 到 1.45 时, $\Delta S / \Delta F$ 出现突然增大, 因此判断 1.45 为边仰坡未支护且巷道未开挖时的稳定系数,此为 后续研究的边仰坡稳定系数初始值。

经大量数值计算发现,巷道开挖对洞口仰坡稳 定性的影响尤为突出,而对明槽两侧边坡无明显影 响,故本文后续研究聚焦在巷道开挖作用下仰坡稳 定性的变化规律。

3.1 断面尺寸与开挖进尺的影响

按照上述研究方案进行数值计算,统计不同断 面尺寸与开挖进尺下坡面最大位移、塑性区体积及 稳定系数,结果见图7~图9。

不同断面尺寸下仰坡最大位移随开挖进尺曲线图 图 7

Fig. 7 Maximum displacement curve of the slope with the excavation footage under different section sizes

Fig. 8 Plastic zone volume curve of the tunnel-slope with the excavation footage

图 7 的计算结果表明:不同巷道断面尺寸下,开 挖进尺在 13.5 m之前,坡面最大位移呈匀速增大, 但总体增加幅度不大,最大位移增量约 1 mm;开挖 进尺在 13.5~25.5 m时,随着断面尺寸增大,最大 位移增量越大,1*D*~1.1*D*断面出现明显陡增现象; 开挖进尺在 25.5 m之后,各开挖断面尺寸下坡面最 大位移均趋于稳定。其中,各模拟开挖断面在前 17.5 m出现的数据异常波动现象为数值计算误差 所致(异常波动位移量值小于 1 mm),总体上,随着 开挖进尺的增加,坡面最大位移增长速率呈匀速一 加速一稳定的变化规律,且随着开挖断面的增大,这 一现象愈发明显。

图 8 的计算结果表明:无论是何种断面尺寸,塑 性区体积均随开挖进尺增加而增大。其中 0.8D 和 0.9D 两个断面在 13.5 m 和 17.5 m 进尺时计算结 果接近为数值计算误差所致(静力计算中应用的动 力松弛法采取质量放大系数和较大阻尼系数,以尽 快达到收敛解,不易获取微小的数据波动),总体上 呈现匀速增加的变化趋势;而 1D 和 1.1D 在开挖进 尺达到 13.5 m 时呈现局部加速增加现象。随着断 面尺寸增大,塑性区体积总体有非线性增加现象,即 从 0.8D~1.1D 四级断面,塑性区体积差值逐渐增 大。由此可知,当巷道开挖断面跨度和高度的最大 值约在 10 m 以下时,其对巷道 - 仰坡构成的地质系 统的稳定性影响较小,但超过 10 m 时,对巷道 - 仰 坡地质系统具有显著作用。

图 9 的计算结果表明:各巷道断面尺寸下,仰坡 稳定系数均随着开挖进尺的增加呈现先逐渐降低而 后趋于稳定的现象,最终仰坡稳定系数不变时的进 尺有随断面尺寸增大而增加的趋势。出现此现象的 原因在于掌子面的空间效应,即掌子面尺寸越大,受 其空间约束的岩土体范围更大,则越慢进入稳定期。 最终保持不变的仰坡稳定系数随巷道断面尺寸的增 大呈现降低幅度增加的现象,其中 0.8D 断面从 1.45 降至 1.35(降幅 6.9%),0.9D 断面从 1.45 降 至 1.3(降幅 10.3%),1D 断面从 1.45 降至 1.2(降 幅 17.2%),1.1D 断面从 1.45 降至 1.05(降幅 27.6%)。

图中0.8D、0.9D 开挖断面在进入稳定区前,部 分进尺下稳定系数出现相同的现象,实际上随开挖 进尺的增加会有略微差别呈下降趋势,但由于数值 计算误差及强度折减法折减系数的间隔值,难以获 取这种微小差异性。总体上,稳定系数的变化规律 为先逐渐减小然后趋于稳定,这与文献[14]的计算 规律相似,但降低幅度有所不同。

3.2 W值的影响

上述研究表明了巷道断面尺寸和开挖进尺对仰 坡稳定性有重要影响,但获得的规律性认识仅是针 对某单个因素而言的,缺乏普适性和工程推广性。 为此,本文引入能综合反映断面尺寸、开挖进尺以及 具有深浅埋特征的上覆地层厚度的指标 W,其计算 公式如下:

$$W = \frac{H}{B} \tag{8}$$

式中,H为巷道顶部至地表的距离(m);B为巷道跨 度和高度中的最大值(m),本文研究对象跨度大于 高度,故取跨度值。由于施工巷道具有8%的下倾 坡率,地表为约15°的斜坡,故W值随着开挖进尺的 增大而增大。

构建仰坡稳定系数与 W 值之间的关系,见图 10。由图可知,随着 W 值的增大,仰坡稳定系数呈 现先逐渐降低而后趋于稳定的现象,且稳定系数降 低速率随断面尺寸增大而增大。根据特定断面下的 稳定系数降低速率不同,将图 10 划分为如下四 个区:

(1)骤降区:巷道开挖第1段(5.5 m)时,各巷 道断面尺寸下的仰坡稳定系数均骤降为1.4,表现 出仰坡在巷道开挖卸荷影响下稳定性突变。由此表 明,在巷道开挖之前施加锁口锚杆等预支护是极为

图 10 仰坡稳定系数随 W 值的变化规律图 Fig. 10 Stability coefficient curve of the entrance slope with W value

重要的,特殊条件下有必要施作一定长度的钢拱架 混凝土明洞。

(2)缓降区:随着巷道断面尺寸的增大,缓降区 逐渐缩短,0.8D~1.1D断面的缓降区W值上限依 次为1.31、1.06、0.43、0.3。出现缓降的原因在于 掌子面的空间效应,即洞口与掌子面距离较小,岩土 体基本都处于掌子面的空间约束范围内,从而抑制 了仰坡稳定性的迅速恶化。

(3) 陡降区:随着巷道继续开挖,掌子面的空间 约束效应对仰坡的作用逐渐减弱,仰坡稳定系数出 现陡降(对应图 6 边坡位移明显增大),0.8D~1.1D 断面的陡降区 W 值上限依次为 1.73、1.43、1.19、
1.15。

(4)平稳区:随着巷道进一步开挖,仰坡稳定系数越过陡降区进入平稳区,表明巷道后续开挖对仰坡稳定性基本无影响,仰坡-巷道的相互作用减弱,已成两个孤立体系。

《公路隧道设计规范》^[27]指出,对于地质条件 较差且埋置较浅的隧道洞口段,由于岩石易风化而 导致围岩长期稳定性相对较差,往往还要承受仰坡 沿隧道纵向的推力,故应在洞口段设加强衬砌(将 洞口围岩的级别降低一级考虑),其认为的洞口段 为覆盖层厚度为1~2倍洞跨处。从本文研究结果 来看,图 10 所示的平稳区之前(即骤降区、缓降区 和陡降区)都应为洞口段,此段与地形地质条件和 地下工程尺寸密切相关,故规范^[27]给出的洞口段为 覆盖层厚度为1~2倍洞跨处是合理的。同时,根据 本文的研究结果(0.8D断面进入平稳区的W值为 1.73),建议与本文研究案例类似的工程宜选取W 为2作为洞口段划分标准。需要指出的是,本文研 究在巷道高跨比为0.93的基础上展开,未考虑巷道 开挖爆破对边仰坡稳定性的影响,也未考虑巷道本 身的局部块体失稳和极限状态下的拉破坏机制(强 度折减法中未折减抗拉强度),有待后续进一步深 入研究。

4 结论

本文以山东某地下水封洞库施工巷道-风化花 岗岩边仰坡地质系统为研究对象,基于离散元数值 分析和监测数据,研究了高跨比为0.93时巷道断面 尺寸、开挖进尺及上覆地层厚度与巷道跨度的比值 等关键因素对边仰坡稳定性影响特征和规律,主要 获得以下结论:

(1)提出了巷道 - 边仰坡地质系统离散元模型 构建、力学参数取值及可靠性检验方法。基于研究 对象工程地质条件,依托 3DEC 离散元分析平台构 建数值模型;首先通过 Q 分类、Hoek-Brown 强度准 则以及《工程岩体分级标准》估算不同风化程度花 岗岩等效力学参数,再通过模拟工程真实开挖支护 过程,基于变形、应力监测数据检验了离散元分析程 序及参数设置的可靠性。

(2)仰坡最大位移在开挖进尺较小(13.5 m) 时,为缓慢增加,各断面的增加速率相当;开挖进尺 进一步增大时,最大位移增加速率随断面尺寸增大 而逐渐加快;当进尺达到 25.5 m时,位移基本趋于 稳定。塑性区体积随进尺增加而增大,并且增大速 率随着断面尺寸的增加而逐渐增大。仰坡稳定系数 随着进尺的增加呈现先降低而后趋于稳定的现象, 并且断面尺寸越大其降低速率和幅度越大,最终降 低幅度为 6.9%~27.6%。

(3)引入上覆地层厚度与巷道跨度之比W值, 发现随着W值增大,仰坡稳定系数呈现先逐渐降低 而后趋于稳定的现象,且稳定系数降低速率随断面 尺寸增大而增大。根据特定断面下的稳定系数降低 速率不同,可将稳定系数与W值的关系划分为骤降 区、缓降区、陡降区和平稳区等四个区段。建议与本 文研究案例类似的工程宜选取W=2作为洞口段划 分标准。

参考文献(References)

- [1] 刘云鹏,黄润秋,霍俊杰.某高速公路花岗岩边坡稳定性评价及防护措施研究[J].防灾减灾工程学报,2008,28(1):19-25.
 [LIU Yunpeng, HUANG Runqiu, HUO Junjie. Study on stability evaluation and protection measures of weathered granite slope in a certain expressway [J]. Journal of Disaster Prevention and Mitigation Engineering, 2008, 28(1):19-25]
- [2] 李世贵,任仁,朱大权,等.强风化花岗岩边坡不同开挖及外荷载 下的变形及应力分布特征[J].交通科学与工程,2011,27(2): 16-22.[LI Shigui, REN Ren, ZHU Daquan, et al. Distribution characteristic of deformation and stress of strong weathering granite slope with the different excavation and other loading [J]. Journal of Transport Science and Engineering, 2011, 27(2): 16-22]
- [3] 李凯,王志兵,韦昌富,等. 饱和度对风化花岗岩边坡土体抗剪特性的影响[J]. 岩土力学,2016,37(s1):267 273. [LI Kai, WANG Zhibing, WEI Changfu, et al. Effect of saturation on shear strength characteristics of weathered granite slope soils [J]. Rock and Soil Mechanics, 2016, 37(s1): 267 273]
- [4] 王贺,张洁,陈飞扬.强降雨条件下花岗岩残积土边坡的时变可 靠度[J].武汉大学学报(工学版),2016,49(5):763 - 767.
 [WANG He, ZHANG Jie, CHEN Feiyang. Time-dependent reliability of slopes made of completely decomposed granite under intense rainfall [J]. Engineering Journal of Wuhan University, 2016,49(5):763-767]
- [5] 邓通发,桂勇,罗嗣海,等.降雨条件下花岗岩残坡积土路堑边坡
 稳定性研究[J].地球科学与环境学报,2012,34(4):88-94.
 [DENG Tongfa, GUI Yong, LUO Sihai, et al. Study on slope

stability of granite residual soil cutting excavation with rainfall [J]. Journal of Earch Sciences and Environment, 2012, 34(4): 88 – 94]

- [6] 袁进科,黄润秋,裴向军,等.基于地震动力响应的强风化花岗岩 公路边坡稳定性分析[J].公路,2010(3):19-25.[YUAN Jinke, HUANG Runqiu, PEI Xiangjun, et al. Stability analysis of strongly weathered granite highway slope based on seismic dynamic response [J]. Highway, 2010(3): 19-25]
- [7]陈玮,简文彬,董岩松,等.软弱结构面对花岗岩残积土边坡稳定性影响[J].中国地质灾害与防治学报,2015,26(1):23-30.
 [CHEN Wei, JIAN Wenbin, DONG Yansong, et al. Influence of weak structural surface on stability of granite residual soil slopes
 [J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(1):23-30]
- [8]张永兴,娄勇,黄达,等. 厦蓉高速公路某隧道洞口段开挖对仰坡 变形影响的数值分析[J]. 中国地质灾害与防治学报,2011,22
 (1):43-50. [ZHANG Yongxing, LOU Yong, HUANG Da, et al. Numerical simulation about influence of slope's deformation caused by one tunnel portal excavation along Xia-Rong highway [J]. The Chinese Journal of Geological Hazard and Control, 2011, 22(1): 43-50]
- [9] 达晓伟,邵珠山,高怀鹏,等.鄂北地区隧道洞口坡积土边、仰坡 变形机制与进洞技术研究[J]. 工程地质学报,2016,24(3): 465-476. [DA Xiaowei, SHAO zhushan, GAO Huaipeng, et al. Deformation mechanism of slop covered with clinosol at tunnel entrance and associated excavation technology in north Hubei province. [J]. Journal of Engineering Geology, 2016, 24(3): 465-476]
- [10] 向安田,朱合华,丁文其,等. 偏压连拱隧道洞口仰坡失稳机制的数值分析[J]. 地下空间与工程学报,2008,4(1):73-79.
 [XIANG Antian, ZHU Gehua, DING Wenji, et al. Mouth slope failure mechanism of shallow embedded and double-arch tunnel with partial-pressure [J]. Chinese Journal of Underground Space and Engineering, 2008, 4(1):73-79]
- [11] 钟浩.基于 FLAC~(3D)动态分析隧道开挖对边坡稳定性的影响[J].公路工程,2010,35(4):147-149+153.[ZHONG Hao. Dynamic analysis on influence of tunnel excavation on slope stability based on FLAC3D [J]. Highway Engineering, 2010, 35 (4): 147-149+153]
- [12] 魏燃. V级围岩大断面隧道开挖步序及对边坡稳定性影响研究
 [J]. 公路工程, 2019, 44(3): 222 227. [WEI Ran. Study on excavation sequence and influence on slope stability of large cross section tunnel of grade V[J]. Highway Engineering, 2019, 44 (3): 222 227]
- [13] 吴红刚,马惠民,包桂钰.浅埋偏压隧道 边坡体系的变形机理研究[J]. 岩土工程学报,2011,33(S1):516 521.[WU Honggang, MA Huimin, BAO Guiyu. Deformation mechanism of tunnel-slope system in shallow tunnels under unsymmetrical pressure [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S1):516 521]

- [14] 朱合华,李新星,蔡永昌,等. 隧道施工中洞口边仰坡稳定性三 维有限元分析[J]. 公路交通科技,2005,22(S1):119-122.
 [ZHU Gehua, LI Xinxing, CAI Yongchang, et al. 3D nonlinear FEM analysis on the stability of the slope at tunnel face during the construction of the twin tunnels [J]. Journal of Highway and Transportation Research and Development, 2005, 22 (S1): 119-122]
- [15] 方建勤,廖树忠.隧道施工对洞口边坡稳定性影响研究[J].公路,2009(12):192 196. [FANG Jianqin, LIAO Shuzhong.
 Study on the influence of tunnel construction on the stability of the entrance slope [J]. Highway, 2009(12): 192 196]
- [16] HOEK E, CARRANZA-TORRES C, CORKUM B. Hoek-Brown failure criterion - 2002 edition [C]//HAMMAH R, BAWDEN W F, CURRAN J, et al. ed. Proceedings of the North American Rock Mechanics Society. NARMS-TAC Conference Toronto: University of Toronto Press, 2002: 267 - 273.
- [17] HOEK E, BROWN E T. Practical estimates of rock mass strength
 [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165-1186.
- [18] HOEK E. Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1990, 27(3): 227-229.
- [19] BASARIR H, GENIS M, OZARSLAN A. The analysis of radial displacements occurring near the face of a circular opening in weak rock mass [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(5): 771-783.
- [20] 吴顺川, 耿晓杰, 高永涛, 等. 基于广义 Hoek-Brown 准则的隧道 纵向变形曲线研究[J]. 岩土力学, 2015, 36(4):946-952+
 987. [WU Shunchuan, GENG Xiaojie, GAO Yongtao, et al. A study of the longitudinal deformation of tunnels based on the

generalized Hoek-Brown failure criterion [J]. Rock and Soil Mechanics, 2015, **36**(4): 946-952+987]

- [21] HOEK E, KAISER P K, BAWDEN W F. Support of Underground Excavations in Hard Rock [M]. London: Taylor & Francis, 1995: 91-105.
- [22] GB/T 50218 2014. 工程岩体分级标准[S].北京:中国计划 出版社, 2014. [GB/T 50218 - 2014. Standard for engineering classification of rock mass[S]. Beijing: China Planning Press, 2014]
- [23] GB 50010-2010. 混凝土结构设计规范[S]. 北京:中国建筑 工业出版社, 2010. [GB 50010 - 2010. Code for design of concrete structures[S]. Beijing: China Architecture & Building Press, 2010]
- [24] 赵尚毅,郑颖人,时卫民,等.用有限元强度折减法求边坡稳定 安全系数[J].岩土工程学报,2002,24(3):343-346.[ZHAO Shangyi, ZHENG Yingren, SHI Weimin, et al. Analysis on safety factor of slope by strength reduction FEM [J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3): 343-346]
- [25] 郑颖人,赵尚毅. 有限元强度折减法在土坡与岩坡中的应用
 [J]. 岩石力学与工程学报,2004,23(19):3381 3388.
 [ZHENG Yingren, ZHAO Shangyi. Application of strength reduction FEM in soil and rock slop [J]. Chinese Journal of Rock Mechanics and Engineering, 2004,23(19):3381 3388]
- [26] 裴利剑,屈本宁,钱闪光.有限元强度折减法边坡失稳判据的统一性[J].岩土力学,2010,31(10):3337-3341.[PEI Lijian,QU Benning,QIAN Shanguang. Uniformity of slope instability criteria of strength reduction with FEM [J]. Rock and Soil Mechanics, 2010, 31(10): 3337-3341]
- [27] JTG D70 2004. 公路隧道设计规范[S]. 北京:人民交通出版 社, 2004. [JTG D70 - 2004. Code for Design of Road Tunnel [S]. Beijing: China Communications Press, 2004]

Influence Law of Access Tunnel Excavation on the Stability of the Entrance Slope of Underground Water-Sealed Cavern

CAO Yangbing^{1,2,3}, CHENG Zhiwei^{1,3}, HUANG Zhenping^{1,2,3*}, ZHAN Ganji^{1,3}

(1. College of Environmental and Resources, Fuzhou University, Fuzhou 350116, China;

2. Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Land and Resources

(Fujian Key Laboratory of Geohazard Prevention), Fuzhou 350116, China;

3. Engineering Research Center of Geological Engineering of Fujian Provincial Universities, Fuzhou 350116, China)

Abstract: Tunnel excavation has an important effect on the stability of the entrance slope, which is very possible to lead to engineering accidents. Based on discrete element simulation and monitoring data, the maximum displacement of slope, the volume of plastic zone and stability coefficient were taken as the evaluation indexes in this paper. It studied the influence of excavation footage, section size and W value (ratio of overlying strata

38 卷

thickness to roadway span) on the stability of a weathered granite slope at the entrance of underground water-sealed tunnel in Shandong province, China. The results showed that with the increase of excavation footage, the maximum displacement growth rate of slope presented a constant, accelerating and stable change rule, and the volume of plastic zone increased continuously. Moreover, the larger the excavation section was, the greater the growth rate of displacement and plastic zone was. With the increase of footage, the slope stability coefficient first decreased and then tended to be stable. Moreover, the larger the section size were, the greater the reduction rate and range of the stability coefficient was, and the final reduction range was $6.9\% \sim 27.6\%$. With the increase of W value, the slope stability coefficient first decreased and then tended to be stable. According to the different reduction rates of the stability coefficient, the relationship curve was divided into the sudden drop area, slow drop area, steep drop area and stable area. The research conclusions provided reference for similar projects to determine the scope of the portal section, construction and stability evaluation.

Key words: tunnel excavation; tunnel section; weathered granite; side and entrance slope; portal section