文章编号: 1008 - 2786 - (2017)6 - 849 - 07 DOI:10.16089/j. cnki.1008 - 2786.000286

基于边坡离心模型试验的砂土表观粘聚力研究

方 薇1,2*,周志刚1,陈向阳1,彭锦艺1

(1.长沙理工大学 交通运输工程学院,长沙 410004;2.长沙理工大学 道路灾变防治及交通安全教育部工程研究中心,长沙 410004)

摘 要:非饱和素砂试样的抗剪强度规律与其完全饱和或完全干燥时不相同。然而,关于含水量对离心试验条件下砂土边坡稳定性影响的研究尚未见任何报道。针对离心试验条件下不同含水量的砂质边坡稳定性的差异性,提出了低含水量砂土的表观粘聚力问题。采用TLJ-150A型土工离心实验机对由福建标准砂组成的含水量或坡角不同的四个边坡模型进行了对比试验,通过数值模拟反演了砂土抗剪强度参数,提出了基于土水特征曲线的砂土表观粘聚力计算公式和离心试验条件下的砂土表观粘聚力计算方法,并通过算例进行了部分验证。试验表明:各边坡模型均呈浅表层崩塌,对应的失稳破坏离心加速度值分别为24.6g(含水量5%,坡角75°)、35.2g(含水量2%,坡角65°)、44.3g(含水量5%,坡角65°)和40.0g(含水量8%,坡角65°);从离心实验结束后的边坡模型中取样进行直剪试验验证了抗剪强度反演值,相对误差不超过13%。研究表明:非饱和砂土抗剪强度的改变是由表观粘聚力引起的,表观粘聚力在一定程度上取决于基质吸力的大小,砂土表观粘聚力最大值与土水特征曲线拟合参数及有效内摩擦角有关。由离心试验获取的砂土表观粘聚力与水体质量、土体含水量和破坏g值成正比,与收缩膜周长和曲率半径成反比。

近年来,土工离心机逐渐成为人们研究岩土工 程的重要工具。土工离心模型试验是利用离心机提 供的离心力模拟重力场,同时按照"几何相似、动力 相似、运动相似"的原则将工程结构的原型按一定 比例缩小,并用相同性状的材料制成小比例尺模型, 使其在离心场中的应力状态与原型在重力场中的达 成一致,以研究工程结构的力学特征和行为的现代 测试技术。天然边坡破坏大多是由重力作用或降雨 等导致的^[1-4],这种致滑过程和机理,用离心模型试 验来进行模拟研究,已经有好的例证。例如, Avgherinos 首先利用土工离心机研究了地下水位陡 降引起的边坡破坏,取得了良好的效果^[5]。美国丹 佛开垦局研究了无粘性土坡在不同因素影响下的极 限承载力^[6]并验证了模拟的可靠性。Yosuke 等人 利用动力离心模型试验等研究了不同含水量对于非 饱和土坝的变形失稳行为的影响^[7]。国内也有学 者开展了超高离心加速度状态下的边坡动力模型实 验,对砂土边坡遭遇高烈度地震时的响应规律进行 了研究^[8]。

目前,有关非饱和土抗剪强度的理论研究取得 了长足进展。Donald 通过试验发现^[9]:非饱和砂土 的抗剪强度特征与饱和砂土或干燥砂土大不相同。 砂土抗剪强度随着含水率的降低而渐减增大;但当 含水率低于某一阀值时,抗剪强度转而减小。这一 规律在制作土样进行直接剪切试验时较为明显,但 在实际工程中究竟呈现何种规律仍有待进一步研

收稿日期(Received date):2016-05-16;改回日期(Accepted date):2016-08-17

基金项目(Foundation item):国家自然科学基金(51408059;51374042);道路灾变防治及交通安全教育部工程研究中心开放基金资助项目 (kfj130302)[National Natural Science Foundation of China (51408059; 51374042); Open Fund of Engineering Research Center of Catastrophic Prophylaxis and Treatment of Road & Traffic Safety (Changsha University of Science & Technology), Ministry of Education (kfj130302).]

作者简介(Biography):方薇(1984 -),男,湖南岳阳人,讲师,工学博士,研究方向为路基与边坡工程[Fang Wei (1984 -), male, born in Yueyang of Hunan Province, lecturer, Ph. D, research on subgrade and slope engineering.] E-mail: fangwei5642366@163.com

究。非饱和砂土分布广泛,大量出现在边坡与基坑 等岩土工程中,因此开展非饱和砂土力学行为的相 关研究就显得十分紧迫和必要。然而,现有文献对 非饱和砂土,尤其是非饱和细(粉)砂方面的研究鲜 有报道。当含水量处于较低水平且密实度较高时, 由细(粉)砂组成的砂土边坡同样可以借助土工离 心机来模拟其失稳过程,而当前关于含水量对离心 试验中砂土边坡稳定性影响的研究尚未见报道。

综上所述,笔者以不同含水量的砂土边坡为研 究对象,通过离心模型对比试验,对其失稳形态进行 观察,并对抗剪强度随含水量和基质吸力的变化规 律进行研究。同时,结合数值模拟和理论分析,对砂 土表观粘聚力的形成原因和确定方法进行了初步 探讨。

1 砂土边坡失稳离心模型试验

试验装置采用长沙理工大学的 TLJ-150A 型土 工离心实验机,其主要参数如表1 所示。试验用砂 的相关参数如图1、图2 和表1 所示^[10]。

表 1 TLJ-150A 型土工离心实验机和试验砂土参数 Tab. 1 TLJ-150A geotechnical centrifuge and test sand parameters

	项目	
	承载能力/g・t	150
一工学之相	最大离心加速度/g	150
土上离心机	旋转半径/m	3.5
	模型箱尺寸/m	0.9×0.36×0.7
706 1	平均粒径/mm	0.16
	土粒比重	2.63
砂土	最大孔隙比	0.95
	最小孔隙比	0.61

本次实验一共包括4个对比模型实验,见表2。

表 2	匹	种边均	皮模型	相关	指标
11.0	ъ		6.6	1	1.1

	Tab. 2 Parameters	s of four slope mode	15
模型	干密度/g・cm ⁻³	含水量/%	坡角/°
А	1.53	5	75
В	1.53	2	65
С	1.53	5	65
D	1.53	8	65

(1)边坡模型采用分层铺填、击实然后削坡的 方式制作。每层砂样铺设厚度为5 cm,总坡高 30 cm。为了保证边坡模型成型准确,事先在模型内壁 绘制若干特征线,如坡面斜线、分层填土控制线、坡 顶边线等。同时,为了降低模型边界影响,坡脚、坡 肩边缘距模型箱内壁的距离均不小于坡高。

(2)自制的击实夯底板尺寸约为 20 × 10 cm。 击实路径:大致呈"弓"字形行进,即顺着模型箱一 侧沿宽度方向夯实,两次连续夯实面留有部分面积 重叠。为了保证模型制样的均匀性,每层填土的夯 实路线和力度尽可能保持一致。

(3)试验开始前,通过程序预先设定好加载路径。试验开始后,采用电机与减速器相配合,驱动土 工离心机主机运行。逐级增大离心加速度,每级增 量为4g,稳定运行两分钟后再增至下一级,直到边 坡模型发生破坏为止。

离心试验流程及试验完成后的边坡模型分别如 图 3、图 4 所示。试验表明四个模型均为浅表层瞬 间崩塌,对应的失稳破坏离心加速度分别为 24.6 g、 35.2 g、44.3 g 和 40.0 g。当模型坡角从 65°(方案 C)增大至 75°(方案 A)时,破坏 g 值明显减小,这表 明材料参数相同时,增大倾角将显著削弱边坡稳定 性;当含水量从5%(方案C)减小至2%(方案B)或 增大至8%(方案D)时,破坏g值同样有所减小,这 表明在几何条件一致的条件下,含水量处于某一区 间时,土体的抗剪强度将出现峰值。此外,破坏后的 滑面均略向内侧偏移,这是由于水平旋转过程中的 边坡模型仍然受到重力作用影响所致。

图 3 边坡失稳离心试验流程图

Fig. 3 Flow chart of centrifugal tests for slope failure

a.模型A

c.模型C

d.模型D

图 4 离心模型试验后的四组边坡模型

Fig. 4 Snapshots of four slope models after centrifugal tests

基于 Flac^{3D}的砂土抗剪强度参数反演 2

本研究中采用三维快速拉格朗日有限差分软件 Flac^{3D},分析中借鉴了"对模型的模拟(Modeling of models)"这一思想,即数值计算中的边坡模型尺寸 和边界条件与离心模型试验中完全一致。在分析过 程中,利用改变重力加速度大小的方式来模拟离心 试验中加速度的变化,同时,为了更加符合离心试验 中的模型受力状态,在边坡模型宽度方向也施加了 1g的重力加速度。

土体采用摩尔 - 库仑模型进行模拟,主要参数 包括弹性体积模量 K、弹性切变模量 G、粘聚力 c、内 摩擦角 φ 、剪胀角 ψ 和抗拉强度 σ_i , 当整个计算体 系中的最大不平衡力与典型内力的比值小于 10-5 时,计算完成。

参考相关文献[11-13],密实砂土的剪胀角取为 15°,其体积模量和切变模量分别取为66.7 MPa 和 18.2 MPa, σ ,取零值。由于非饱和砂土中存在基质 吸力,密实湿砂常常具有一定的"表观粘聚力"。考 虑到模型 A 和 C 的初始条件(含水量)和加工过程 (夯实)是相同的,虽然削坡成型时的坡角不同,但 其材料参数应是一致的,于是在反演时可以通过对 这两个模型假定一组不同的"表观粘聚力"来获得 "表观内摩擦角"。两条"表观粘聚力-表观内摩擦 角"曲线的交点即是砂土材料的抗剪强度参数。值 得注意的是,砂土边坡成型过程决定了砂土的这种 表观粘聚力并非是各向同性的,但正如实际工程中 所有的边坡稳定分析问题一样,在反算中我们将抗 剪强度参数视为处处一致且各项同性的。如图5所 示,根据极限平衡条件得到的模型 A 和 C 的反演结 果为:c = 4.6 kPa, $\varphi = 50.2^{\circ}$ 。

$$c_{\mathfrak{F}} = (u_a - u_w)_f \tan\varphi^b \tag{2}$$

式中,c'为有效黏聚力; φ' 为有效内摩擦角; $(u_a - u_w)_f$ 为破坏时破坏面上的基质吸力; $(\sigma_n - u_a)_f$ 为 破坏时破坏面上的净法向应力; φ^b 表示因基质吸力 $(u_a - u_w)$ 增加而导致抗剪强度增加的曲线的倾角。 经验表明, φ^b 并非常数,而是随着基质吸力 $(u_a - u_w)$ 的变化而变化,通常地,低基质吸力水平下的 φ^b 约等于 φ' 。基质吸力增加时, φ^b 渐渐趋近于零。

由式(2)可知在非饱和砂土中,抗剪强度可由 表观粘聚力 c_砂 和有效内摩擦角 φ'来表征,而砂土 抗剪强度的变化是由表观粘聚力 c_砂 导致的,或者 更明确地说,是由基质吸力引起的。由于试验始终 伴随有离心排水过程,所得到的抗剪强度指标即为 有效强度指标,表观内摩擦角即为有效内摩擦角。 于是,我们可以进一步地获取模型 B 和模型 D 的表 观粘聚力分别为 3.9 kPa 和 4.3 kPa。

为了对以上反演结果进行对比验证,课题组从 离心实验结束后的边坡模型中取样进行了直剪试 验,竖向压力分别为100 kPa、200 kPa、300 kPa和 400 kPa,剪切速率为0.02 mm/min。取样位置如图 6 所示,直剪试验结果列于表3。对比可知,虽然取 样高度有差异,但由于夯实过程和离心试验的影响, 不同埋深处的土体强度分层效应已不显著。直剪试 验结果均值与反演结果相近,相对误差不超过 13%。

Fig. 6 Sampling positons of direct shear test

3 非饱和砂土表观粘聚力计算方法

3.1 基于土水特征曲线的砂土表观粘聚力计算方 法^[10]

Vanapalli 等人曾提出 ϕ^{b} 与土的体积含水量间 的关系式^[14]:

		1ab. 5	nesuns of c	inect snear tes	15		
		取样部位			占什		
模型 A A ₁	A_2	B_1	B_2	C ₁	C ₂	均值	相对误差/%
3.82	4.41	4.24	4.97	4.22	3.76	4.24	-7.9
45.5	49.0	42.8	39.7	37.2	47.9	43.68	-13.0
取样部位							
\mathbf{A}_1	A_2	B_1	B_2	C ₁	C_2	均值	相对误差/%
3.55	3.12	3.38	3.85	3.06	3.60	3.43	- 12. 1
37.2	41.1	49.3	53.8	46.4	48.2	46.00	-8.4
		取样部位				边体	
A ₁	A_2	B_1	B_2	C ₁	C ₂	均值	相对误差/%
4.63	5.81	5.32	4.51	5.04	3.91	4.87	5.9
42.7	35.9	48.8	52.1	40.2	44.2	43.98	-12.4
			2样部位			协体	
模型 D A ₁	A_2	B_1	B_2	C_1	C_2	均值	相对误差/%
3.78	4.52	4.22	3.88	3.29	3.51	3.87	- 10. 1
46.2	52.6	49.3	51.5	43.4	37.2	46.70	-6.9
	$\begin{array}{c c} & A_1 \\ \hline & 3.82 \\ 45.5 \\ \hline & \\ \hline & \\ A_1 \\ \hline & 3.55 \\ 37.2 \\ \hline & \\ \hline & \\ A_1 \\ \hline & \\ 4.63 \\ 42.7 \\ \hline & \\ \hline & \\ A_1 \\ \hline & \\ 3.78 \\ 46.2 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Image: second	取样部位 取样部位 A ₁ A ₂ B ₁ B ₂ 3.82 4.41 4.24 4.97 45.5 49.0 42.8 39.7 工 取样部位 A ₁ A ₂ B ₁ B ₂ 3.55 3.12 3.38 3.85 37.2 41.1 49.3 53.8 取样部位 A ₁ A ₂ B ₁ B ₂ 3.55 3.12 3.38 3.85 37.2 41.1 49.3 53.8 取样部位 4.63 5.81 5.32 4.51 42.7 35.9 48.8 52.1 取样部位 A ₁ A ₂ B ₁ B ₂ 3.78 4.52 4.22 3.88 46.2 52.6 49.3 51.5	Ital: 5 Heads of differ side its $Iai: 5$ Heads of differ side its $Iai: 5$ Heads of differ side its $Iai: 5$ Heads of differ side its A_1 A_2 B_1 B_2 C_1 $A_5.5$ 49.0 42.8 39.7 37.2 $Iai: 5$ $A9.0$ 42.8 39.7 37.2 $Iai: 5$ A_1 A_2 B_1 B_2 C_1 $Iai: 5$ 3.12 3.38 3.85 3.06 37.2 41.1 49.3 53.8 46.4 $Iai: 4$ A_2 B_1 B_2 C_1 4.63 5.81 5.32 4.51 5.04 42.7 35.9 48.8 52.1 40.2 $Iai: 4$ A_2	Results of uncer such tests $\overline{Rk}\# \widehat{m}\widehat{\omega}$ A ₁ A ₂ B ₁ B ₂ C ₁ C ₂ 3.82 4.41 4.24 4.97 4.22 3.76 45.5 49.0 42.8 39.7 37.2 47.9 $\overline{Rk}\# \widehat{m}\widehat{\omega}$ \overline{Rk} \overline{Rk} \overline{Rk} \overline{Rk} \overline{Rk} $\overline{A_1}$ A_2 B_1 B_2 $\overline{C_1}$ $\overline{C_2}$ 3.55 3.12 3.38 3.85 3.06 3.60 37.2 41.1 49.3 53.8 46.4 48.2 $\overline{Rk}\# \widehat{m} \widehat{\omega}$ $\overline{C_1}$ $\overline{C_2}$ $\overline{C_1}$ $\overline{C_2}$ 4.63 5.81 5.32 4.51 5.04 3.91 42.7 35.9 48.8 52.1 40.2 44.2 $\overline{Rk} \widehat{m} \widehat{\omega}$ 46.2 52.6 49.3 51.5	Iteration of direct state tests $\mu k \# m \Delta$ μfa Λ_1 Λ_2 B_1 B_2 C_1 C_2 μfa 3.82 4.41 4.24 4.97 4.22 3.76 4.24 45.5 49.0 42.8 39.7 37.2 47.9 43.68 $\mu k \# m \Delta$ $\mu k \# m \Delta$ $\mu k \# m \Delta$ μfa B_2 C_1 C_2 βfa 3.55 3.12 3.38 3.85 3.06 3.60 3.43 37.2 41.1 49.3 53.8 46.4 48.2 46.00 $\mu k \# m \Delta$ $\mu k \# m \Delta$ $\mu k \# m \Delta$ μfa μfa μfa 4.63 5.81 5.32 4.51 5.04 3.91 4.87 42.7 35.9 48.8 52.1 40.2 43.98 μfa $M \mu k \pi \Delta$ B_1 B_2 C_1 C_2 μfa 42.7 35.9 48.8 52.1 40.2

表 3 直剪试验结果

C 1 · · 1

100

$$\tan\varphi^{b} = \left(\frac{\theta - \theta_{r}}{\theta_{s} - \theta_{r}}\right) \tan\varphi'$$
(3)

式中, θ 为土体中的体积含水量; θ ,为饱和含水量; θ ,为成和含水量; θ ,为残余含水量。

对砂性土,通常建议采用 van Genuchten 土水特 征曲线模型^[15]:

$$\frac{\theta_s - \theta_r}{\theta - \theta_r} = \left[1 + \left(\frac{u_a - u_w}{a}\right)^n\right]^m \tag{4}$$

式中:*α*,*n*,*m* 为模型参数且均为正,且*m*=1-1/*n*。 把式(3)、式(4)代入式(2),有:

$$c_{\mathfrak{B}} = \frac{(u_a - u_w)}{\left[1 + \left(\frac{u_a - u_w}{\alpha}\right)^n\right]^m} \tan\varphi'$$
(5)

为书写简洁起见,令 $S = u_a - u_w$,则有:

$$\frac{\mathrm{d}c_{\overline{\mu}\overline{\nu}}}{\mathrm{d}S} = \frac{\left[1 + \left(\frac{S}{\alpha}\right)^{n}\right] - mn\left(\frac{S}{\alpha}\right)^{n}}{\left[1 + \left(\frac{S}{\alpha}\right)^{n}\right]^{m+1}} \mathrm{tan}\varphi' \quad (6)$$

由于素砂完全干燥($\theta = 0$)或完全饱和($\theta = \theta_s$)时的表观粘聚力均为零,故 $0 < \theta < \theta_s$ 时必存在极大值,同时有: $dc_w/dS = 0$,亦即:

$$1 + \left(\frac{S}{\alpha}\right)^n = mn\left(\frac{S}{\alpha}\right)^n \tag{7}$$

考虑到 m = 1-1/n,得:

$$S = \frac{\alpha}{\sqrt[n]{n-2}} \tag{8}$$

将式(8)代入式(5),可得砂土最大表观粘聚力 计算公式为:

$$c_{\emptyset max} = \frac{\alpha (n-2)^{1-\frac{2}{n}}}{(n-1)^{1-\frac{1}{n}}} \tan \varphi'$$
(9)

当基质吸力满足式(8)时,砂土表观粘聚力将 会达到最大值,并可由式(9)计算。为了对式(5)和 式(8)进行验证,选取了文献[16]作比较分析。图 7为原文献给出的某粉细砂土水特征曲线,图8为 原文献得到的该粉细砂粘聚力随饱和度的变化情况 与本文公式计算结果的对比,可见,实验得到的粘聚 力峰值与公式计算结果接近,但其对应的饱和度区 间略偏小。总体来说,本文计算公式仍是具有一定 合理性的,其精确程度有待进一步验证。

3.2 离心试验条件下砂土材料的表观粘聚力

对于非饱和土,由于收缩膜上的表面张力作用, 即使在强大的离心力作用下,仍有一定量的水分牢 牢吸附在坡体孔隙内。在离心试验条件下,根据径 向受力平衡(忽略地球重力影响),有:

$$\rho_w g_f V_w = T_s L \cos \kappa \tag{10}$$

上式中: ρ_w 为水的密度(kg/m³); g_f 为离心试验 破坏 g 值(N/kg); V_w 为水的体积(m³); T_s 为表面张 力,即收缩膜单位长度上承担的张力(N/m);L 为收 缩膜周长(m); κ 为接触角,即表面张力方向与径向 夹角。

根据非饱和土力学原理,有以下公式成立:

$$V_w = \theta V \tag{11}$$

 $T_{\rm s} = S \cdot R_{\rm s}/2 \tag{12}$

根据式(4)和式(5),可得:

$$c_{\mathcal{W}} = S(\theta - \theta_r) \tan \varphi' / (\theta_s - \theta_r)$$
(13)

式(11) ~ 式(13) 中: V 为土体体积(m^3); S 为 基质吸力(kPa); R_s 为收缩膜曲率半径(m); 其余变 量同前。将式(11) ~ 式(13)代入式(10), 可得离心 试验条件下的砂土表观粘聚力计算公式如下:

$$c_{\mathcal{W}} = \frac{2\rho_w V g_f \theta(\theta - \theta_r) \tan\varphi'}{L R_s(\theta_s - \theta_r) \cos\kappa}$$
(14)

可见,由离心试验获取的砂土表观粘聚力与水体质量、土体含水量和破坏g值成正比,与收缩膜周长和曲率半径成反比。

4 结语

(1)离心试验表明四个模型均为浅表层瞬间崩塌,对应的失稳破坏g值分别为24.6g、35.2g、 44.3g和40.0g。当含水量从5%(方案C)减小至 2%(B)或增大至8%(方案D)时,破坏g值同样有 所减小,这表明在几何条件一致的条件下,含水量处 于某一区间时,土体的抗剪强度将出现峰值。

(2)砂土抗剪强度的变化是由表观粘聚力 c_w 导致的,或更明确地说,是由基质吸力引起的。由于 试验始终伴随有离心排水过程,所得到的抗剪强度 指标即为有效强度指标,表观内摩擦角即为有效内 摩擦角。为了对反演结果进行验证,对离心实验结 束后的边坡模型取样进行了直剪试验,其相对误差 不超过 13%。

(3)砂土表观粘聚力最大值与土水特征曲线拟 合参数及有效内摩擦角有关。由离心试验获取的砂 土表观粘聚力与水体质量、土体含水量和破坏g值 成正比,与收缩膜周长和曲率半径成反比。

参考文献(References)

- 油新华,李晓. 国外离心模型试验技术在边坡工程中的应用现状与展望[J]. 工程地质学报,2000,8(4):442-445 [YOU Xinhua, LI Xiao. Current status and prospect of application of centrifugal model test to slope engineering [J]. Journal of Engineering Geology, 2000,8(4):442-445].
- [2] 姚裕春,姚令侃.降雨条件下边坡破坏机理离心模型研究[J]. 中国铁道科学,2004,25(4):64-68 [YAO Yuchun, YAO Lingkan. Analysis of a centrifugal model of slope damage mechanism during rainfall[J]. China Railway Science, 2004, 25(4):64-68].
- [3] 陈强,孟国伟.砂性土边坡稳定性离心模型试验研究[J].水文地质工程地质,2011,38(2):58-62 [CHEN Qiang, MENG Guowei. Centrifuge model tests on the stability of sandy soil slopes [J]. Hydrogeology and Engineering Geology, 2011, 38(2):58-62].
- [4] 黄井武,陈晓平.路堑边坡施工过程离心模型试验及数值模拟 研究[J]. 岩土力学,2010,31(增2):422-427 [HUANG Jingwu, CHEN Xiaoping. Centrifugal model test and numerical analysis of cutting slope during construction [J]. Rock and Soil

Mechanics, 2010,31(Supp. 2):422-427].

- [5] AVGHERINOS P J , SCHOFIELD A N. Drawdown failures of centrifuged models [C]. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico Vol. 2 pp. 497 – 505, 1969.
- [6] MARK C G, HON Y K. Centrifugal model tests for ultimate bearing capacity of footings on steep slopes in cohesionless soils [C]. Centrifuge'88, 1988, 203 – 221.
- [7] YOSUKE H, CHUNG W L. Study of dynamic stability of unsaturated embankments with different water contents by centrifugal model tests[J]. Soils and Foundations, 2015, 55(1): 112-126.
- [8] 于玉贞,邓丽军. 砂土边坡地震动力响应离心模型试验[J].清 华大学学报(自然科学版),2007,47(6):789-792[YU Yuzhen, DENG Lijun. Centrifuge model test of the seismic response behavior of a sand slope [J]. Journal of Tsinghua University (Science and Technology),2007,47(6):789-792].
- [9] FREDLUND D, RAHARDJO H. Soil mechanics for unsaturated soils [M]. NewYork: Wiley, 1993:258 - 259.
- [10] 方薇,周志刚,彭锦艺.低含水率砂土边坡离心模型试验与数 值模拟[J].公路交通科技,2016,33(9):38-45 [FANG Wei, ZHOU Zhigang, PENG Jinyi. Centrifugal model test and numerical simulation of sandy slope with low moisture [J]. Journal of Highway and Transportation Research and Development, 2016, 33 (9):38-45].
- [11] 张嘎,王爱霞. 边坡破坏过程离心模型试验的应力位移场研究
 [J]. 岩土力学, 2008, 29(10): 2637 2641 [ZHANG Ga, WANG Aixia. Study of stress and displacement fields in centrifuge modeling of slope progressive failure [J]. Rock and Soil Mechanics, 2008, 29(10): 2637 2641].
- [12] Itasca Consulting Group, Inc. Flac3D User Manuals [M]. USA: Itasca Consulting Group Inc, 2005;482-483.
- [13] 工程地质手册[M].北京:中国建筑工业出版社,2007:369-376 [Handbook of engineering geology [M]. Beijing: China Building Industry Press, 2007:369-376].
- [14] Vanapalli S K, Fredlund D G, Pufahl D E, et al, Model for the prediction of shear strength with respect to soil suction [J]. Canadian Geotechnical Journal, 1996, 33: 379 - 392.
- [15] van Genuchten M T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils [J]. Soil Science Society of America Journal, 1980, 44: 892 - 898.
- [16] 林鸿州,李广信,于玉贞,等. 基质吸力对非饱和土抗剪强度 的影响[J]. 岩土力学,2007,28(9):1932-1936 [LIN Hongzhou, LI Guangxin, YU Yuzhen, et al. Influence of matric suction on shear strength behavior of unsaturated soils[J]. Rock and Soil Mechanics, 2007,28(9):1932-1936].

Apparent Cohesion in Sandy Slope Failure under Centrifugal Test Condition

FANG Wei^{1,2*}, ZHOU Zhigang¹, CHEN Xiangyang¹, PENG Jinyi¹

(1. School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410004, China;

2. Engineering Research Center of Catastrophic Prophylaxis and Treatment of Road & Traffic Safety of Ministry of Education,

Changsha University of Science & Technology, Changsha 410004, China)

Abstract: Unsaturated sand in a lab test exhibit distinct strength pattern from those of fully dry samples or the saturated. However, experimental investigations into the effect of soil moisture on sandy slope stability under centrifugal conditions have remained blank so far. In order to examine the alteration in stability of sandy slopes with varied water contents in centrifugal tests, this research introduced the concept of apparent cohesion for low moisture sandy soil. TLJ-150A geotechnical centrifuge for contrast test was utilized to inspect four slope models which were composed of Fujian standard sand with the designed water contents or inclinations. Then shear strength parameters were back-analyzed by numerical simulation. Calculation formula of apparent cohesion based on soil-water characteristics curve as well as centrifugal test conditions were theoretically derived and partially verified in case. Tests showed that all slope models failed in a pattern of sudden shallow collapse, while the corresponding centrifugal acceleration values in failure were 24.6 g (water content 5%, slope angle 75°), 35.2 g (water content 2%, slope angle 65°), 44.3 g (water content 5%, slope angle 65°) and 40.0 g (water content 8%, slope angle 65°). The values of shear strength obtained by back-analysis were verified by direct shear tests after centrifugal tests, with a relative error less than 13%. Results showed that the variation of shear strength of unsaturated sand was caused by apparent cohesion. Further, the apparent cohesion depended upon matric suction to some extent, and the peak value of apparent cohesion largely relied on the fitting parameters of soil water characteristic curve (SWCC) and effective friction angle. The apparent cohesion of unsaturated sand obtained by centrifugal tests was directly proportional to soil moisture content, water quality and g value in failure, and it varied inversely with the perimeter and curvature radius of shrink film.

Key words: sandy slope; apparent cohesion; centrifugal test; numerical simulation