文章编号: 1008-2786(2004)04-0472-05

川藏公路尼洋河下游宽浅游荡型河段水毁路基 防护试点工程

程尊兰,游勇,吴积善

(中国科学院水利部成都山地灾害与环境研究所,四川成都 610041)

摘 要: 川藏公路 K 425 7+710~ K 425 8+205 位于尼洋河下游宽浅游荡型河段。通过对该段路基水毁的形成因 素、水毁特征及防护工程水毁的分析, 再通过野外路基防护工程模型试验, 建立适合该段路基的冲刷保护计算公 式: $h_r/h=1.3(B/r)0.391(h/d)0.141F_r0.947\exp(-0.16m-0.11(\sigma_e-1.3))$, 确定了路基水毁永久性防护工 程的方案。在保证足够的基础埋深的基础上,提出了一种新的防护工程结构,为青藏高原宽浅游荡型河段水毁路 基防护工程建设提供了示范。

关键词:西藏;公路;游荡型河段;水毁;防护工程

中图分类号: P631 文献标识码: A

水毁是川藏公路的主要病害,分布广,发生频 繁,危害十分严重[1-3]。其除直接毁坏路基、桥梁 和涿洞等建筑物外,还诱发崩塌、滑坡、泥石流等山 地灾害,造成路况恶化,断道阻车每年短则3月,长 则达半年以上[4-6]。其中的宽浅游荡性河段水段、 路段占整个水毁路段的 1/3 以上。查明此类型路段 所在的地质环境及水动力条件,提出有针对性的防 护工程措施,不仅对西藏,而且对整个西南山区相似 类型河段路基防护,均具重要的实际和指导意义。 本文以川藏公路尼洋河下游(K4257+710~ K4258+205) 宽浅游荡型河段公路路基为例, 系统 阐述水毁原因、防治措施。

研究段水毁因素分析

尼洋河是雅鲁藏布江北侧一级支流。北侧为念 青唐古拉山,南侧为冈底斯山。尼洋河上游为古冰 川作用形成的宽谷,中游为窄谷,下游为2~3 km 宽的宽谷。研究段位于下游宽谷段,河谷开阔,地势 较平坦,两岸分布有多级阶地。河谷属山区分汊游 荡型河谷,主流在河床中摆动。自20世纪90年代 初以来,由于上游河势变化,主流改走邻近公路的北 汊,该汊道又向北弯曲,随着流量增加,凹岸侧蚀增 强, 弯道顶部迅速向公路推进, 弯道越向北发展, 曲 率越小, 1997年前后曲率半径 R 为 363 m, 到 2001 年和 2002 年汛期后, 分别减为 335 m 和 301 m。 随 曲率半径减小,对凹岸冲刷侵蚀强度相对增加。

研究段公路处于尼洋河北岸一级阶地后缘,河 岸由构成阶地的河流相物质构成,上部为河漫滩相 沙层, 间夹细砾和粉砂, 厚度一般约 2.2 m; 下部为 河床相砂砾石层:钻孔资料揭示,整个层厚约 13 m: 砾石的砾径多为 20~100 mm, 中值粒径(dso)为 44.2 mm, 取样剖面中最大砾石长径 181 mm, 与一 般山区河流相比, 粒径相对较小, 易被洪水起动和搬 运。经过粗化的河床表层粒径稍大,一般为50~ 200 mm, d₅₀为 113 mm, 取样处最大直径 380 mm, 整个砂砾石层结构松散,一遇洪水易于起动和搬运。

尼洋河下游属亚热带湿润气候区, 年平均降水

收稿日期(Received date); 2003-11-30; 改回日期(Accepted); 2004-03-11。

基金项目(Foundation item): 国家自然科学基金资助项目(40371016); 交通部西部交通建设科技项目(2001 318 79257).[This research is supported by China National Science Found (40371616), The Ministry of Communications (2001 31879257).]

作者简介(Biography): 程尊兰(1952一), 女, 汉族, 四川隆昌人, 副研究员, 主要从事山地灾害及防治工程研究, 已发表相关论文近 30 篇。 [Chen Zunlan (1952-), female, Han nationality, born in Longchang Sichuan, associated professor, major in mountain hazards and prevention methods study, has announced nearly 30 articles, E-mail: czl@imde.ac.cn.]

量 650.7 mm, 日最大降水量 30.9 mm, 降水集中于 4~10 月,约占全年降水量的 96.6%。研究段以上 尼洋河流域面积15 786.0 km²,来水量大。汛期洪 水主要来源于降水和冰雪融水,尤遇暴雨时,洪水猛涨。研究段尼洋河枯水位为海拔3 294.07 m,根据 洪痕推定的 2002 年最高洪水位为海拔3 298.56 m,高出枯水位 4.49 m。

显然,松散的路基结构及汛期形成的高水位、大流量洪水是造成河岸路基垮塌,尤其是凹岸部位强烈遭受侵蚀导致路基垮塌的主要因素。

2 研究段水毁及其防护现状

研究段除东端 90 m 公路紧靠山脚外,其余都从尼洋河北岸一级阶地后缘通过。由于 20 世纪 80 年代主汉靠南,邻近川藏公路的北汊流量不大,距公路均在 40 m 以上,对公路尚无危害。但从 90 年代初开始,随着上游河势的变化,北汊流量渐渐加大,成为主汊,弯道凹岸侵蚀冲刷增强,不断向公路推进。特别是 1997 年尼洋河洪水,使河岸向北推进了10~15 m,对公路安全构成威胁。

1998年前后沿河岸修筑了铁丝石笼护墙,长约260 m,高4~5 m,护墙呈阶梯状,由4~5 层高、宽

各 1 m,长 2~3 m 的铁丝石笼依河岸叠置而成。同时,在弯道冲刷严重的河段,还安置了铁丝石笼丁坝。由于铁丝石笼是临时性防护建筑物,加之没有基础埋深,在尼洋河弯道洪水强烈侧蚀下,很快遭到毁坏,经 1999~2001年 3 个汛期后,除东端 130 m 尚存外,其余护墙全部被冲毁,河岸又向公路推进了10~20 m,对公路安全威胁进一步加大。

2002年初为确保公路畅通,沿后退的新河岸又修建了高 4~5 m 的铁丝石笼护堤 272 m,其东端与未遭冲毁的老护墙连接,西侧顶端建有一条挑水坝,二者仍没有基础埋深。而尼洋河的冲刷深度,在弯道凹岸处一般在正常河床面以下 2~3.5 m,最深达4.1 m。工程 5月竣工后,8月就有117 m 被冲毁,护堤冲毁段河岸又向公路推进了8~18 m,离公路最近处仅10.2 m,直接威胁公路安全。

为此,基于该段公路水毁路基现状,在全面分析水毁成因基础上,提出了针对这种宽浅游荡型河段路基的长期防护工程设计方案。

3 防护工程方案对比研究

对于研究段水毁路基防护,根据实际情况,提出 了三个整治方案,各有优缺点,详见表 1。

表 1 研究段路基水毁防护工程方案优劣对比表
Table 1 Comparsion of programs in roadbed water damage prevention works

Table 1 Comparation of programs in roadbed water damage prevention works			
方案编号和名称	第一方案	第二方案	第三方案
	铅丝笼挡墙、铅丝笼丁坝	浆砌石倾斜式护岸堤	桩基础+护岸堤+铅丝笼丁坝
主要工程内容	1. 铅丝笼挡墙, 总长 390 m, 高度 5.0 m 2. 老铅丝笼挡墙加固处理工程, 长 105 m 3. 丁坝, 共 12 道, 丁坝长 15 m, 丁坝之间间距 45 m	1. 浆砌石防护堤, 高度 4.0 m, 基础埋深 6.0 m, 长度 99 m 的直 段; 高度 5.5 m, 基础埋深 6.0 m, 长度 396 m 的弧段, 总长度 495 m	1. 桩基础, 桩尺寸40 cm×40 cm, C ₃₀ 钢 筋混凝土桩, 长 9.5 m, 共 495 根 2. 桩基平台工程 3. 浆砌石防护堤工程, 防护堤长 495 m
一次性投资 初步估算	395. 48 万元 (工程直接费)	712 52万元 (工程直接费)	1 020 48 万元 (工程直接费)
优点	1. 铅丝笼抗冲性能较好,适应河床变形能力较强 2. 一次性投资相对较小 3. 施工技术简单	1. 基本消除水毁的危害,可保证设计标准情况下公路畅通 2. 施工时,基本不影响公路正常运营 3. 主要建筑材料取材方便	1. 消除洪水危害,确保公路长期畅通 2. 基本不留后患,不存在重复投资 3. 解决水下施工质量难以保证问题 4. 施工时,对行车基本没有影响
缺点	1. 难以抵抗较大、大洪水的冲击 2. 路基安全难以保证,无法确保公路 畅通 3. 后期重复投资增加	1. 基础埋置深度大,水下施工工艺和技术难度大 2. 工程投资偏大	工程投资大
比较结果	临时保通方案	基本可行	推荐方案

第一方案投资最小,但仅是临时保通措施,不能防止洪水对路基的危害。第二方案可基本消除洪水的危害,但工程的基础埋深大,水下施工排水十分困难,基础工程质量难以得到有效保证,存在潜在危险。第三方案桩基础可通过灌注桩施工,结合护岸堤及铅丝笼丁坝能完全消除洪水对路基的危害,能保证公路长期畅通,虽然投资大,但能做到一劳永逸。因此,第三方案为最佳实施方案。

冲刷深度是该工程设计中的一个关键参数,防护工程的基础要位于冲刷线以下,而目前尚无适用于西藏河流路基冲刷的计算公式。作者通过山区沿河路基冲刷防护的模型试验研究,确定了路基冲刷深度计算公式(1),此段工程的冲刷深度按照该公式讲行计算

$$\frac{h_s}{h} = 1. \ 3 \left(\frac{B}{r}\right)^{0.391} \left(\frac{h}{d}\right)^{0.141} Fr^{0.947} e^{-0.16m} e^{-0.11(\frac{\sigma}{g} - 1.3)}$$

式中 h_s 为弯道凹岸最大冲刷深度(m),以平均床面高程计;h 为弯道进口的行近水深(m);B 为河槽宽度(m);r 为弯道中线半径(m);d 为泥沙中值粒径(m);m 为护墙迎水面的边坡系数; σ_g 为粒径的几何均方差, $\sigma_g = \sqrt{d_{84,1}/d_{15,9}}$;Fr 为行近水流的佛汝德数, $Fr = V^2/(gh)$;V 为弯道进口的行近流速(m/s)。

根据该段的实测参数,代入公式(1)后,得出冲刷深度 h_s 为 9.8 m,因此,针对该段路基水毁的特点,在保证足够的基础埋深的基础上,提出一种新的防护工程结构形式。

4 "桩基础+护岸堤+铅丝笼丁坝"防护工程结构设计

4.1 工程平面布置

研究段水毁防护工程平面布置时,工程轴线尽量沿现有主河槽岸边布置,因势利导,上、下、左、右兼顾,使水流顺畅。

防护工程的起点在弯道段上游约 99 m 处,起点防护工程堤肩嵌入岸边 3.0 m,以防止洪水冲刷破坏堤肩。防护工程从起点沿目前河岸岸边线向下游直线布置,此直线段防护堤长 99 m。直线段后,采用近似园弧走线布置,园弧半径 R=250 m,中心角约 91° ,近似园弧堤线长 396 m。在目前最下游的旧铅丝笼和中部残存铅丝笼段,新建防护工程从归

铅丝笼的后侧(靠公路)布置,以便可以利用旧铅丝笼起一定的防护作用。防护工程的终点在最下游,旧铅丝笼挡墙防护工程末端嵌入岸边内 3.0 m,整个防护工程总长度 495 m。同时考虑到此段河岸处于尼洋河的大溜顶冲段,局部冲刷大,在防护工程局部顶冲段布置丁坝群,丁坝采用铅丝笼结构形式,丁坝的长 15.0 m,间距 45 m,共布置丁坝 12 道。工程平面布置见图 1。

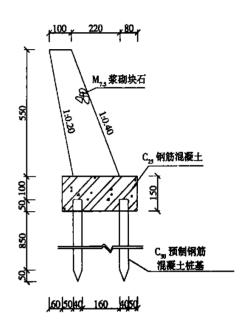


图 1 桩基护岸墙结构图

Fig. 1 Profile of counterfort with pile foundation

4.2 防护工程的高度

根据整个防护工程的地形条件和设计水位、弯道超高、安全超高,综合考虑防护工程堤的高度,在0+00至0+60区段为4.0 m,在0+60至0+99区段堤高由4.0 m 逐渐过渡到5.5 m,在0+99至4+95区段堤高为5.5 m。

4.3 防护工程的基础埋深

由于防护工程处于尼洋河的大溜顶冲段,顶冲段的局部冲刷强烈,防护工程的基础必须要埋置在设计洪水冲刷线以下部位。根据实际调查看,研究段水毁点防护工程以防护堤和丁坝为主,其承受荷载较轻,该处河床为砂砾石,地基承载力一般可以达到 200 kPa,满足允许承载力要求。据计算,研究段在设计洪水条件下冲刷深度一般为 3. 13 m~6. 01 m,综合考虑后确定桩基础埋深 10. 5 m。研究段河床质地相对较细, 抗冲刷性能较差,如果采用常规的

ning House. All rights reserved. http://www.cnki.net

防护堤工程措施,基础埋深达到 8~10 m,不仅造成基础部分水下施工难度非常大,基础工程质量难以得到有效保证,而且工程投资很大,因而采取桩基础结构形式,既可解决水下基础施工技术难题,又可节省投资。

4.4 防护工程的结构设计

桩基防护堤工程包括桩基础、护岸堤、桩基平台 三部分,其结构形式如图1所示。

4.4.1 桩基础

桩基采用 40 cm×40 cm 的 C₃₀钢筋砼, 桩的长度 9.5 m, 为防止不均匀沉降的影响, 桩与底板构成一单独单元, 共布置 33 个独单元。每单元内桩基布置成交错型的二排, 每一单元内有 15 根桩, 整个防护工程共有 49 根桩基。第一单元内, 桩之间的纵向和横向净间距为 1.6 m。

4.4.2 护岸堤

- 1. 护岸堤采用倾斜式护坡结构形式,在满足设计深度要求条件下,尽量使断面尺寸合理,以节省投资,降低造价。防护堤迎水面边坡系数 1:0.40,背水面边坡系数 1:0.20。
- 2. 防护堤堤顶宽度 $1.0 \, \text{m}$, 堤高度在 $0+00 \, \text{至}$ 0+60 为 $4.0 \, \text{m}$, 相应堤底宽度为 $1.8 \, \text{m}$, 堤高度在 $0+60 \, \text{至} \, 0+99 \,$ 范围内由 $4.0 \, \text{m} \,$ 逐渐过渡到 $5.5 \, \text{m}$, $0+99 \, \text{至} \, 4+95 \,$ 范围内堤的高度为 $5.5 \, \text{m}$, 相应堤底宽度 $2.4 \, \text{m}$ 。
- 3. 为了防止地基不均匀沉降和温度应力对护岸堤的破坏,每隔 15.0 m 设置一道变形沉降缝,缝内充填沥青木板。

4.4.3 桩基底板

在护岸堤的底部、桩基顶部采用 C_{25} 钢筋砼基台连接,为防止不均匀沉降和温度应力的破坏,基台每15 m 设置成一独立单元,共布置 33 个单元。基台宽度 3.4 m,高度 1.5 m,桩基延伸基台内 0.5 m。基台采用直接 ϕ 14 钢筋布置成网格型,纵、横向净间距 0.10 m。

4.5 丁坝工程的设计

丁坝工程的设计主要是确定平面布置和结构, 其断面结构形式及尺寸如图 2 所示。

根据 K425 7 水毁点河道实际变化情况,将丁坝布置成群,以起到互相保护的作用,使丁坝更好发挥效益。丁坝布置成下挑,坝轴线与水流流向交角为35°~45°,下挑丁坝坝头水流较平顺,可将主流引导到右岸,调整水流流向。

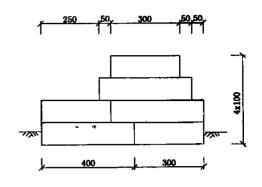


图 2 丁坝结构断面图

Fig 2 Profile of spur dike

5 结语

本文以尼洋河下游段为例,分析了青藏高原宽 浅游荡型河段路基水毁特点以及现有防护工程水毁 状况,并提出以"桩基础+护岸堤+铅丝笼丁坝"相 结合的防护工程结构形式。当洪水不超过设计频率 (25 a 一遇)时,可以防止路基水毁发生,即使洪水达 到校核频率(50 a 一遇)时,也不会出现严重的路基 水毁。上述设计已在典型示范段施工,同时该示范 工程也为西藏及整个西南山区类似条件沿河公路路 基防护工程建设提供参考依据,对保证西藏及西南 地区公路畅通有重要意义和推广价值。

参考文献(references):

- [1] Zhu Pingyi, Wang Yangchun. Flood disaster of highway in Tibet [J]. Journal of natural disasters, 2001. 10(4), 148~152.[朱平一, 汪阳春. 西藏公路水毁灾害[J]. 自然灾害学报, 2001, 10(4), 148~152.]
- [2] Liang Guangmo, Zhang Zhengbo, Qiang Ba. Strategy on prevention methods of water damage in the lower Lulang River section of Sichuan-Tibet highway[J]. *Journal of Mountain Science*, 2003, **21**(suppl): 153~156. [梁光模, 张正波, 强巴. 川藏公路鲁朗河下游段水毁防护工程对策[J]. 山地学报, 2003, **21**(增刊): 153~156.]
- [3] Cheng Zunlan, Liang Guangmo, Zhang Zhengbo. Strategy on safe-project of water damaged roadbed along river in mountain area of southeast Tibe([J]]. Journal of Mountain Science, 2003, 21(suppl.): 157~160.[程尊兰,梁光模,张正波. 藏东南高山区沿河公路路基水毁防护工程对策[J]. 山地学报, 2003, 21(增刊): 157~160.]
- [4] Institute of Mountain Hazards and Environment, CAS. Water Damage to Highways in Tibet [M]. Chengdu: Sichuan Science Technolog Publishing House, 2002, 74~80.[中国科学院成都山地灾害与环境研究所.西藏公路水毁研究[M].成都:四川科学

技术出版社, 2002, 74~80.1 ?1994-2014 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

- [5] Institute of Mountain Hazards and Environment, CAS, Debris flow and Environment in Tibe [M]. Chengdu: Science Technolog University Publishing House, 1999 48~51.[中国科学院成都山地灾 害与环境研究所. 西藏泥石流与环境[M]. 成都: 成都科技大学 出版社, 1999, 48~51.1
- [6] Institute of Mountain Hazards and Environment Chinese Academy of Sciences & Ministry of Water Conservancy, Institute of the

Traffic Science of the Traffic Department of the Tibet Autonomous Region. A study of typical mountain hazards along Sichuan-Tibet highway[M]. Chengdu: Science and Technology University Publishing House, 1999 172~181. [中国科学院水利部成都山地灾 害与环境研究所, 西藏自治区交通科学研究所著, 川藏公路典 型山地灾害研究[M]. 成都:成都科技大学出版社,1999,172~ 181.]

Prevention Works of Roadbed Water-Damage along Meandering Channels in Tibet

-A Case Study in Sichun-Tibet Highway in the Lower Nivang River

Cheng Zunlan, You Yong, Wu Jishan

(Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Water Conservancy Ministry, Chengdu 610041 China)

Abstract: The lower Niyang River is meandering with wide and shallow channel, where water-damage is very serious to roadbed in the K4257+710 ~K4258+205 section of Sichun-Tibet Highway. This paper analyses the forming factors and characters of the damage, and puts forward an empirical formula: $h_s/h = 1.3 (B/r)^{0.391}$ $(h/d)^{0.141} Fr^{0.947} \exp(-0.16m - 0.11(\sigma_g - 1.3))$, for estimation of the washing out. This provides a design criteria for the durable control works, basing on the given buried depth of roadbed. All of these give a pilot study for the construction of roadbed prevention works in Tibet.

Keywords: Tibet; highway; meandering channel; water-damage; prevention works