[1]巨淑君,高志良,蒋明成,等.震后大渡河流域丹巴—乐山段地质灾害隐患[J].山地学报,2023,(3):411-421.[doi:10.16089/j.cnki.1008-2786.000758 ]
 JU Shujun,GAO Zhiliang,et al.Post-Earthquake Hidden Dangers of Geological Hazards in the Danba-Leshan Section of the Dadu River Basin, China[J].Mountain Research,2023,(3):411-421.[doi:10.16089/j.cnki.1008-2786.000758 ]
点击复制

震后大渡河流域丹巴—乐山段地质灾害隐患
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第3期
页码:
411-421
栏目:
山地灾害
出版日期:
2023-05-20

文章信息/Info

Title:
Post-Earthquake Hidden Dangers of Geological Hazards in the Danba-Leshan Section of the Dadu River Basin, China
文章编号:
1008-2786-(2023)3-411-11
作者:
巨淑君12高志良23蒋明成2高 强2屈向阳4
(1.成都理工大学,成都 610059; 2.国能大渡河流域水电开发有限公司,成都 610000; 3.大连理工大学,辽宁 大连 116081; 4.河南理工大学,河南 焦作 454000)
Author(s):
JU Shujun1 2 GAO Zhiliang2 3 JIANG Mingcheng2 GAO Qiang2 QU Xiangyang4
(1. Chengdu University of Technology, Chengdu 610059,China; 2. Guoneng Dadu River Basin Hydropower Development Co., Ltd., Chengdu 610000, China; 3. Dalian University of Technology, Dalian 116081, Liaoning, China; 4. Henan Polytechnic University, Jiaozuo 454000, Henan, China )
关键词:
InSAR SBAS 隐患 Sentinel-1 大渡河
Keywords:
InSAR SBAS geological hazards sentinel-1 the Dadu River
分类号:
P
DOI:
10.16089/j.cnki.1008-2786.000758
文献标志码:
C
摘要:
泸定地震导致大渡河沿线及周边区域分布有大量次生地质灾害和地质灾害隐患点,极大制约了流域内社会经济发展,对该区域进行大范围隐患普查和早期识别,有助于防灾减灾工作的展开。本文基于时序InSAR技术对大渡河流域丹巴—乐山段超过1000 km范围进行了大面积滑坡隐患点普查,并结合PS与SBAS技术有效降低西南地区复杂的时间去相干问题。研究结果表明:(1)8处重点关注区域存在明显的滑坡和崩塌隐患点,主要集中在石棉和泸定地区,其中部分隐患点对流域有较大安全威胁。(2)泸定地震导致黄草坪、郑家坪与新华村典型隐患区产生加速沉降趋势,地面人员应重点观测。本研究可为后续分析泸定地震后灾害分布情况及流域内大坝及边坡变形机理分析和灾害预警提供可靠信息及数据支撑。
Abstract:
Affected by the Luding earthquake, a large number of geological hazards were generated along and around the Dadu River, which greatly restricts the social and economic development of the basin. The large-scale geological hazard survey and early identification of the region are helpful to disaster prevention and mitigation. In this paper, based on the time-series InSAR technology, a large-scale landslide hazard point survey was carried out in the Dadu-Leshan section of the Dadu River basin over 1000 km. Combined with PS and SBAS technology, the complex time decoherence problem in the southwest region was effectively reduced. Results show that:(1)There were obvious landslides and avalanches in eight key areas of concern, mainly concentrated in the Shimin and Luding areas, some of which posed a significant safety threat to the watershed.(2)The Luding earthquake resulted in a accelerated subsidence trend in the typical hazard areas of Huangcaoping, Zhengjiaping, and Xinhua village. The trend should be monitored by ground personnel. This study provides reliable information and data support for subsequent analyses of disaster distribution after the Luding earthquake and the deformation mechanisms of dams and slopes in the watershed, as well as for disaster early warning.

参考文献/References:

[1] 韩炳权, 刘振江, 陈博, 等. 2022年泸定Mw 6.6地震InSAR同震形变与滑动分布[J]. 武汉大学学报(信息科学版), 2023, 48(1): 36-46.[HAN Bingquan, LIU Zhenjiang, CHEN Bo, et al. Coseismic deformation and slip distribution of the 2022 Luding Mw 6.6 earthquake revealed by InSAR observation [J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 36-46] DOI: 10.13203/j.whugis20220636
[2] 铁永波, 张宪政, 卢佳燕, 等. 四川省泸定县Ms6.8级地震地质灾害发育规律与减灾对策[J]. 水文地质工程地质, 2022, 49(6): 1-12.[TIE Yongbo, ZHANG Xianzheng, LU Jiayan, et al. Characteristics of geological hazards and it's mitigations of the Ms6.8 earthquake in Luding county, Sichuan province[J].Hydrogeology and engineering geology, 2022, 49(6): 1-12] DOI: 10.16030/j.cnki.issn.1000-3665.202209023
[3] 葛大庆, 戴可人, 郭兆成, 等. 重大地质灾害早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版), 2019, 44(7): 949-956.[GE Daqing, DAI Keren, GUO Zhaocheng, et al. Early identification of serious geological hazards with integrated remote sensing technologies: Thoughts and recommendations [J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949-956] DOI: 10.13203/j.whugis20190094
[4] LAN H, MARTIN C D, ZHOU C, et al. Rockfall hazard analysis using LiDAR and spatial modeling[J].Geomorphology, 2010, 118(1-2): 213-223. DOI: 10.1016/j.geomorph.2010.01.002
[5] GORUMT. Landslide recognition and mapping in a mixed forest environment from airborne LiDAR data[J].Engineering Geology, 2019, 258: 105155. DOI: 10.1016/j.enggeo.2019.105155
[6] SU Lijun, HU Kaiheng, ZHANG Weifeng, et al. Characteristics and triggering mechanism of Xinmo landslide on 24 June 2017 in Sichuan, China[J].Journal of Mountain Science, 2017, 14(9): 1689-1700. DOI: 10.1007/s11629-017-4568-8
[7] 许强, 李为乐, 董秀军, 等. 四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J]. 岩石力学与工程学报, 2017, 36(11): 2612-2628.[XU Qiang, LIWeile, DONG Xiujun, et al. The Xinmocun landslide on June 24, 2017 in Maoxian, Sichuan: Characteristics and failure mechanism [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2612-2628] DOI: 10.13722/j.cnki.jrme.2017.0855
[8] CROSETTO M, MONSERRAT O, CUEVAS-GONZALEZ M, et al. Persistent Scatterer Interferometry: A review[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115(5): 78-89. DOI: 10.1016/j.isprsjprs.2015.10.011
[9] 李鹏, 李振洪, 李陶, 等. 宽幅InSAR大地测量学与大尺度形变监测方法[J]. 武汉大学学报:信息科学版, 2017, 42(9): 1195-1202.[LI Peng, LI Zhenhong, LI Tao, et al. Wide-Swath InSAR geodesy and its appLications to large-scale deformation monitoring[J].Geomatics and Information Science of Wuhan University, 2017, 42(9): 1195-1202]DOI: 10.13203/j.whugis20150587
[10] 杨成胜, 张勤, 赵超英, 等. 短基线集InSAR技术用于大同盆地地面沉降、地裂缝及断裂带监测中的应用[ J ]. 武汉大学学报(信息科学版),2014,39(8):945-950[YANG Chengsheng, ZHANG Qin, ZHAO Chaoying, et al. Small baseline bubset InSAR technology used in Datong basin ground subsidence, fissure and fault zone monitoring [J]. Geomatics Information Science of Wuhan University, 2014, 39(8): 945-950] DOI: 10.13203/j.whugis20130656
[11] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害早期识别与监测预警[J]. 武汉大学学报(信息科学版),2019, 44(7): 957-966.[XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards [J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966]DOI: 10.13203/j.whugis20190088
[12] INTRIERI E, RASPINI F, FUMAGALLI A, et al. The Maoxian landslide as seen from space: Detecting precursors of failure with Sentinel-1 data[J]. Landslides, 2018, 15(12): 123-133. DOI: 10.1007/s10346-017-0915-7
[13] 王战卫. 基于SBAS—InSAR技术的青海大通县滑坡识别方法研究[D]. 成都: 成都理工大学, 2019: 62. [WANG Zhanwei.Research on landslide identification method in Datong county, Qinghai based on SBAS-InSAR technology [D].Chengdu: Chengdu University of Technology, 2019: 62]DOI:10.26986/d.cnki.gcdlc.2019.000568
[14] 张路, 廖明生, 董杰, 等. 基于时间序列InSAR分析的西部山区滑坡灾害隐患早期识别——以四川丹巴为例[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2039-2049.[ZHANG Lu, LIAO Mingsheng, DONG Jie, et al. Early detection of landslide hazards in mountainous areas of west China using time series SAR interferometry: A case study of Danba, Sichuan [J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2039-2049] DOI: 10.13203/j.whugis20180181
[15] 黄会宝, 马芳平, 沈定斌, 等. 大渡河流域大坝智能监测探索与实践[J]. 水电与抽水蓄能, 2022, 8(3): 16-22+34.[HUANG Huibao, MA Fangping, SHEN Dingbin, et al. Exploration and practice of dam intelligent monitoring in Dadu River Basin [J]. Hydropower and Pumped Storage, 2022, 8(3): 16-22+34] DOI: 10.3969/j.issn.2096-093X.2022.03.004
[16] 徐晓雪, 季灵运, 张文婷, 等. 基于相干性的InSAR时间序列方法追溯四川雅安地区汉源滑坡灾前形变[J]. 地球科学与环境学报, 2022, 44(4): 632-640.[XU Xiaoxue, JI Lingyun, ZHANG Wenting, et al. Pre-failure displacements of Hanyuan landslide in Ya'an area of Sichuan, China tranced by a coherence-based InSAR time series method [J]. Journal of Earth Science and Environment, 2022, 44(4): 632-640] DOI: 10.19814/j.jese.2021.06015
[17] 巴仁基, 王丽, 郑万模,等. 大渡河流域地质灾害特征与分布规律[J]. 成都理工大学学报(自然科学版), 2011, 38(5): 529-537. [BA Renji, WANG Li, ZHENG Wanmo, et al. Characteristics and distribution of geological disasters in Dadu River Basin [ J ].Journal of Chengdu University of Technology(Natural Science Edition), 2011, 38(5): 529-537] DOI: 10.3969/j.issn.1671-9727.2011.05.009
[18] TORRES R, SNOEIJ P, GEUDTNER D, et al. GMES Sentinel-1 mission[J]. Remote Sensing of Environment, 2012, 120: 9-24. DOI: 10.1016/j.rse.2011.05.028
[19] FERRETTI A, PRATI C, ROCCA F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2202-2212. DOI: 10.1109/36.868878
[20] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383. DOI: 10.1109/TGRS.2002.803792
[21] 王秀英, 聂高众. 汶川Ms 8.0级地震诱发崩滑特点及其与地震动参数对应关系初析[J]. 岩土工程学报, 2009, 31(9): 1378-1383.[WANG Xiuying, NIE Gaozhong. Characteristics of landslides induced by Wenchuan Ms 8.0 earthquake and preliminary analysis of their relations with ground motion parameters [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1378-1383] DOI: 1000-4548(2009)09-1378-06
[22] 王秀英, 聂高众, 王登伟. 利用强震记录分析汶川地震诱发滑坡[J]. 岩石力学与工程学报, 2009, 28(11): 2369-2376.[WANG Xiuying, NIE Gaozhong, WANG Dengwei. Analysis of landslides induced by Wenchuan earthquake by strong motion records [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(11): 2369-2376] DOI: 1000-6915(2009)11-2369-08
[23] 王秀英. 地震滑坡灾害快速评估技术及对应急影响研究[J]. 岩石力学与工程学报, 2010, 29(10): 2159-2159.[WANG Xiuying. Study of fast evaluation technology of earthquake-induced landslides and their effects on earthquake emergency rescue [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(10): 2159-2159]DOI: 10.3969/j.issn.0235-4975.2011.07.012
[24] 汪素云, 时振梁. 有感半径与震级的关系及其应用[G]//国家地震局震害防御司. 中国地震区划文集. 北京: 地震出版社, 1993: 179-184.[WANG Suyun, SHI Zhenliang. Relationship between sensible radius and magnitude and its application [G]// Earthquake Damage Prevention Department of the National Earthquake Administration. Collection of Seismic Zoning in China. Beijing: Earthquake Press, 1993: 179-184]
[25] 汪素云, 俞言祥, 高阿甲, 等. 中国分区地震动衰减关系的确定[J]. 中国地震, 2000, 16(2): 99-106.[WANG Suyun, YU Yanxiang, GAO Ajia, et al. Development of attenuation relations for ground motion in China [J]. Earthquake Research in China, 2000, 16(2): 99-106] DOI: 10.3969/j.issn.1001-4683.2000.02.001

相似文献/References:

[1]余祥伟,薛东剑*,陈凤娇.植被及坡度对SAR干涉相干性的影响分析[J].山地学报,2020,(6):926.[doi:10.16089/j.cnki.1008-2786.000568]
 YU Xiangwei,XUE Dongjian*,CHEN Fengjiao.Analysis of Influence of Vegetation Coverage and Slope on SAR Interferometric Coherence[J].Mountain Research,2020,(3):926.[doi:10.16089/j.cnki.1008-2786.000568]

备注/Memo

备注/Memo:
收稿日期(Received date): 2022-12-23; 改回日期(Accepted date):2023-06-20
基金项目(Foundation item): 四川省科技计划项目(2022YFG0120); 科技创新项目(KB-KY-2021-001)。[Sichuan Science and Technology Plan Project(2022YFG0120); Science and Technology Innovation Project(KB-KY-2021-001)]
更新日期/Last Update: 2023-05-30