[1]黄 勇,孙 傲,朱芝铮,等.山地城市大排水系统级联失效机制研究——以重庆市渝中区为例[J].山地学报,2023,(1):115-128.[doi:10.16089/j.cnki.1008-2786.000735]
 HUANG Yong,SUN Ao,ZHU Zhizheng,et al.Cascading Failure Mechanism of Major Rainwater Drainage System in Mountainous City: A Case Study of Yuzhong District of Chongqing, China[J].Mountain Research,2023,(1):115-128.[doi:10.16089/j.cnki.1008-2786.000735]
点击复制

山地城市大排水系统级联失效机制研究——以重庆市渝中区为例
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第1期
页码:
115-128
栏目:
山区发展
出版日期:
2023-01-20

文章信息/Info

Title:
Cascading Failure Mechanism of Major Rainwater Drainage System in Mountainous City: A Case Study of Yuzhong District of Chongqing, China
文章编号:
1008-2786-(2023)1-115-14
作者:
黄 勇1孙 傲1朱芝铮1向姮玲2
(1.重庆大学 建筑城规学院,重庆 400030; 2.重庆大学建筑规划设计研究总院有限公司,重庆 400045)
Author(s):
HUANG Yong1 SUN Ao1 ZHU Zhizheng1 XIANG Hengling2
(1. School of Architecture and Urban Planning, Chongqing University, Chongqing 400030, China; 2. General Research Institute of Architectural & Planning and Design Co., Ltd., Chongqing University, Chongqing 400045, China)
关键词:
山地城市 内涝 大排水系统 级联失效 溢流传播 重庆
Keywords:
mountainous city waterlogging major drainage system cascading failure overflow propagation Chongqing
DOI:
10.16089/j.cnki.1008-2786.000735
文献标志码:
A
摘要:
城市大排水系统是由道路、自然通道、明渠、滞水地与调蓄设施等构成的过量地表径流排蓄系统。大排水系统因其排蓄过程的开放性特点,极易引发溢流失控、交通中断或城市用地滞水等级联效应,是城市内涝问题的关键诱因之一。现有研究对大排水系统的定量分析不足,更缺乏对其在山地城市中的级联失效机制研究。本文以重庆市渝中区为靶区,采用复杂网络分析方法,构建大排水系统级联失效模型,刻画地表溢流传播过程,挖掘山地城市大排水系统级联失效原理及其基本规律。研究表明:(1)模拟大排水系统级联失效的区域与往年靶区内涝区域基本一致;(2)当其他不确定性因素稳定时,开敞的地表环境会降低靶区大排水系统的过载程度,减缓内涝持续时间及发生程度,而地表环境的开敞程度与内涝发生区域并不相关;(3)地表溢流在山地地形下更易集聚在构成大排水系统的部分物质要素当中,暴雨增大会加剧这种集聚趋势,而开敞的地表环境则会加大地表溢流的空间分流程度,以此减小这种集聚趋势;(4)靶区内小范围的低洼、平坦地形,会使地表溢流易集聚或蔓延,而大范围的山地起伏地形在加快地表溢流排蓄的同时,能控制靶区内地表溢流蔓延。本研究可为山地城市大排水系统规划建设提供科学依据,提升排涝防涝能力水平。
Abstract:
Major drainage system is a rainwater drainage system in a city designed to extra-excessive runoff diversion composed of roads, natural passages, open channels, ponded rainwater(standing water or stagnant water)sites and storage facilities, etc. Due to the openness role of rainwater collecting and discharging process, the major drainage system is subjected to cascading aftermath, such as uncontrolled overflow, traffic interruption or inundation in urban land, which contribute to urban waterlogging. There was a lack of research on quantitative analysis of major urban drainage system, especially for its cascading failure mechanism in mountain cities. In this study, it took Yuzhong district of Chongqing, China as a case study to investigate the pattern of urban surface flow in a mountainous city and the inherent cascading failure mechanism of its major drainage system; it used complex network analysis method to build a cascading failure model to simulate mal-functionality of the major drainage system in the event of extreme rainstorm. The results include:(1)The full extent of cascading failure in Yuzhong delineated by simulation was generally consistent with the waterlogging areas observed in previous years;(2)As other uncertain factors were unchanged, the open ground environment was able to reduce the function overloading of the major drainage system and slow down the duration of local inundation and occurrence extent; the open level of the ground environment was not correlated with the occurrence sites of waterlogging;(3)Surface overflow in certain terrains was more likely to be drained shortly into the element structures of the major drainage system, particularly more in the case of intensified rainstorms; however, the open ground environment restricted this centralized drainage trend as a result of spatial diversion of surface flow;(4)A small range of depression and flat terrain in the city made surface overflow flowable to ponding or ramifying, while a large range of undulating terrain speeded up the surface overflow into drainage storage and impeded it in wandering. This research provides a scientific basis for planning of major drainage system in mountain cities, as well as drainage capacity refurbishing and waterlogging preventing.

参考文献/References:

[1] 赵丰昌, 章林伟, 高伟. 海绵城市理念下城市内涝防治体系构建的探讨[J]. 给水排水, 2021, 47(8): 37-44. [ZHAO Fengchang, ZHANG Linwei, GAO Wei. Discussion on the construction of urban flooding control system under the concept of sponge city [J]. Water and Wastewater Engineering, 2021, 47(8): 37-44] DOI: 10.13789/j.cnki.wwe1964.2021.08.007
[2] 徐耀阳, 李刚, 崔胜辉, 等. 韧性科学的回顾与展望:从生态理论到城市实践[J]. 生态学报, 2018, 38(15): 5297-5304. [XU Yaoyang, LI Gang, CUI Shenghui, et al. Review and prospect on resilience science: From ecological theory to urban practice [J]. Acta Ecological Sinica, 2018, 38(15): 5297-5304] DOI: 10.5846/stxb201709081620
[3] MOGES E, DEMISSIE Y, LARSEN L, et al. Review: Sources of hydrological model uncertainties and advances in their analysis [J]. Water, 2020, 13(1): 28-28. DOI: 10.3390/w13010028
[4] 张建云, 王银堂, 贺瑞敏, 等. 中国城市洪涝问题及成因分析[J]. 水科学进展, 2016, 27(4): 485-491. [ZHANG Jianyun, WANG Yintang, HE Ruimin, et al. Discussion on the urban flood and waterlogging and causes analysis in China [J]. Advances in Water Science, 2016, 27(4): 485-491] DOI: 10.14042/j.cnki.32.1309.2016.04.001
[5] BERTILSSON L, WIKLUND K, DE MOURA TEBALDI I, et al. Urban flood resilience: A multi-criteria index to integrate flood resilience into urban planning [J]. Journal of Hydrology, 2019, 573: 970-982. DOI: 10.1016/j.jhydrol.2018.06.052
[6] 王晶, 赵龙, 吴辉, 等. 西南地区城市化进程加剧局地气象条件的空间差异[J]. 山地学报, 2022, 40(1): 120-135. [WANG Jing, ZHAO Long, WU Hui, et al. Urbanization magnifies spatial variations of local meteorological conditions in southwest China [J]. Mountain Research, 2022, 40(1): 120-135] DOI: 10.16089/j.cnki.1008-2786.000660
[7] WANG Weiping, YANG Saini, STANLEY H E, et al. Local floods induce large-scale abrupt failures of road networks [J]. Nature Communications, 2019, 10(1): 1-11. DOI: 10.1038/s41467-019-10063-w
[8] U.S. Department of Transportation. Urban drainage design manual(third edition)[M]. Washington: Washington Hydraulics Engineering Publication, 2009: 2-9.
[9] 车伍, 杨正, 赵杨, 等. 中国城市内涝防治与大小排水系统分析[J]. 中国给水排水, 2013, 29(16): 13-19. [CHE Wu, YANG Zheng, ZHAO Yang, et al. Analysis of urban flooding control and major and minor drainage systems in China [J]. China Water and Wastewater, 2013, 29(16): 13-19] DOI: 10.19853/j.zgjsps.1000-4602.2013.16.004
[10] 黄华兵, 王先伟, 柳林. 城市暴雨内涝综述:特征、机理、数据与方法[J]. 地理科学进展, 2021, 40(6): 1048-1059. [HUANG Huabing, WANG Xianwei, LIU Lin. A review on urban pluvial floods: Characteristics, mechanisms, data and research methods [J]. Progress in Geography, 2021, 40(6): 1048-1059] DOI: 10.18306/dlkxjz.2021.06.014
[11] MCCLYMONT K, CUNHA D G F, MAIDMENT C, et al. Towards urban resilience through Sustainable Drainage Systems: A multi-objective optimisation problem [J]. Journal of Environmental Management, 2020, 275: 111173. DOI: 10.1016/j.jenvman.2020.111173
[12] DONG Xin, GUO Hao, ZENG Siyu. Enhancing future resilience in urban drainage system: Green versus grey infrastructure [J]. Water Research, 2017, 124: 280-289. DOI: 10.1016/j.waters.2017.07.038
[13] 徐雷, 吴正松, 邵知宇, 等. 基于SWMM耦合模型的道路行泄通道设计方法与应用[J]. 中国给水排水, 2021, 37(1): 114-120. [XU Lei, WU Zhengsong, SHAO Zhiyu, et al. Design method and application of roadway drainage path based on coupled hydraulic SWMM model [J]. China Water and Wastewater, 2021, 37(1): 114-120] DOI: 10.19853/j.zgjsps.1000-4602.2021.01.019
[14] GRAF W L. Network characteristics in suburbanizing streams [J]. Water Resources Research, 1977,13(2): 459-463.
[15] BANNISTER E N. Impact of road networks on southeastern Michigan lakeshore drainage [J]. Water Resources Research, 1979, 15(6): 1515-1520.
[16] 夏军, 张印, 梁昌梅, 等. 城市雨洪模型研究综述[J]. 武汉大学学报(工学版), 2018, 51(2): 95-105. [XIA Jun, ZHANG Yin, LIANG Changmei, et al. Review on urban storm water models [J]. Engineering Journal of Wuhan University, 2018, 51(2): 95-105] DOI: 10.14188/j.1671-8844.2018-02-001
[17] 康宏志, 郭祺忠, 练继建, 等. 海绵城市建设全生命周期效果模拟模型研究进展[J]. 水力发电学报, 2017, 36(11): 82-93. [KANG Hongzhi, GUO Qizhong, LIAN Jijian, et al. Advances in simulation models for whole-life-cycle effectiveness of sponge city construction [J]. Journal of Hydroelectric Engineering, 2017, 36(11): 82-93] DOI: 10.11660/slfdxb.20171109
[18] 桂晗亮, 张春萍, 武治国, 等. 人工神经网络和SWMM在降雨径流模拟中的应用对比[J]. 中国给水排水, 2021, 37(13): 108-112. [GUI Hanliang, ZHANG Chunping, WU Zhiguo, et al. Application of artificial neural network and SWMM applied in rainfall runoff simulation [J]. China Water and Wastewater, 2021, 37(13): 108-112] DOI: 10.19853/j.zgjsps.1000-4602.2021.13.019
[19] BOCCALETTI S, BIANCONI G, CRIADO R, et al. The structure and dynamics of multilayer networks [J]. Physics Reports, 2014, 544(1): 1-122. DOI: 10.1016/j.physrep.2014.07.001
[20] MOTTER A E, LAI Yingcheng. Cascade-based attacks on complex networks [J]. Physical Review E, 2002, 66(6): 065102(R). DOI: 10.1103/PhysRevE.66.065102
[21] BAKHSHIPOUR A E, DITTMER U, HAGHIGHI A, et al. Toward sustainable urban drainage infrastructure planning: A combined multiobjective optimization and multicriteria decision-making platform [J]. Journal of Water Resources Planning and Management, 2021, 147(8): 04021049. DOI: 10.1061/(ASCE)WR.1943-5452.0001389
[22] DONG Shangjia, WANG Haizhong, MOSTAFIZI A, et al. A network-of-networks percolation analysis of cascading failures in spatially co-located road-sewer infrastructure networks [J]. Physica A: Statistical Mechanics and Its Applications, 2020, 538: 122971. DOI: 10.1016/j.physa.2019.122971
[23] 黄勇, 魏猛, 万丹, 等. 西南山地多灾区域道路网络可靠性规律分析[J]. 同济大学学报(自然科学版), 2020, 48(4): 526-535. [HUANG Yong, WEI Meng, WAN Dan, et al. Analysis of reliability of road network in mountainous disaster-prone areas in southwest China [J]. Journal of Tongji University(Natural Science), 2020, 48(4): 526-535] DOI: 10.11908/j.issn.0253-374x.18476
[24] MUKHERJEE S, MISHRA A K. Cascading effect of meteorological forcing on extreme precipitation events: Role of atmospheric rivers in southeastern US [J]. Journal of Hydrology, 2021, 601: 126641. DOI: 10.1016/j.jhydrol.2021.126641
[25] 车伍,马震,王思思,等.中国城市规划体系中的雨洪控制利用专项规划[J].中国给水排水, 2013, 29(2): 8-12. [CHE Wu, MA Zhen, WANG Sisi, et al. Special planning for stormwater management and utilization in Chinese urban planning system [J]. China Water and Wastewater, 2013, 29(2):8-12]
[26] 谢映霞. 从城市内涝灾害频发看排水规划的发展趋势[J]. 城市规划, 2013, 37(2): 45-50. [XIE Yingxia. Development of drainage planning in view of frequent urban waterlogging disasters [J]. Urban Planning Journal, 2013, 37(2): 45-50]
[27] 王瑛, 刘天雪, 李体上, 等. 中国中小型自然灾害的空间格局研究——以地震、洪涝、旱灾为例[J]. 自然灾害学报, 2017, 26(4): 48-55. [WANG Ying, LIU Tianxue, LI Tishang, et al. Study on spatial pattern of small and medium sized natural disasters in China: A case of earthquake, flood and drought [J]. Journal of Natural Disasters, 2017, 26(4): 48-55] DOI: 10.13577/j.jnd.2017.0406
[28] 熊俊楠, 李进, 程维明, 等. 西南地区山洪灾害时空分布特征及其影响因素[J]. 地理学报, 2019, 74(7): 1374-1391. [XIONG Junnan, LI Jin, CHENG Weiming, et al. Spatial-temporal distribution and influencing factors of mountain flood disaster in southwest China [J]. Acta Geographica Sinica, 2019, 74(7): 1374-1391] DOI: 10.11821/dlxb201907008
[29]周剑, 汤明高, 许强, 等. 重庆市滑坡降雨阈值预警模型[J]. 山地学报, 2022, 40(6): 847-858. [ZHOU Jian, TANG Minggao, XU Qiang, et al. Early warning model of rainfall-induced landslide in Chongqing of China based on rainfall threshold [J]. Mountain Research, 2022, 40(6): 847-858] DOI: 10.16089/j.cnki.1008-2786.000718
[30] 钟敦伦, 谢洪, 韦方强, 等. 论山地灾害链[J]. 山地学报, 2013, 31(3): 314-326. [ZHONG Dunlun, XIE Hong, WEI Fangqiang, et al. Discussion on mountain hazards chain [J]. Mountain Research, 2013, 31(3): 314-326] DOI: 10.16089/j.cnki.1008-2786.2013.03.019
[31] GB50014—2021. 室外排水设计标准[S]. 北京: 中国计划出版社, 2021. [GB50014—2021. Standard for design of outdoor wastewater engineering [S]. Beijing: China Planning Press, 2021]

相似文献/References:

[1]李泽新,王蓉.山地城市道路交通环境特点及其控制对策[J].山地学报,2014,(01):46.
 LI Zexin,WANG Rong.F[J].Mountain Research,2014,(1):46.
[2]张永兴,王桂林,杜太亮.边坡立体绿化工程的稳定性[J].山地学报,2002,(04):489.
[3]方一平,石原润.山地城市西昌城区景观体系建设[J].山地学报,2003,(01):90.
[4]黄光宇,黄莉芸,陈娜.山地城市街道意象及景观特色塑造[J].山地学报,2005,(01):101.
[5]郭丽英,胡业翠.东南沿海山地城市土地资源综合开发模式探讨——以温州乐清市为例[J].山地学报,2005,(01):121.
[6]冒亚龙,欧阳梅娥.山地城市的分形美学特征[J].山地学报,2007,(02):148.
[7]汪昭兵,杨永春.探析城市规划引导下山地城市空间拓展的主导模式[J].山地学报,2008,(06):652.
[8]刘 骏*,何 颖.山地城市海绵型绿地立体构建途径[J].山地学报,2018,(01):125.[doi:10.16089/j.cnki.1008-2786.000308]
 LIU Jun* and HE Ying.On the Multidimensional Construction of SpongeGreen Spaces in Mountain City[J].Mountain Research,2018,(1):125.[doi:10.16089/j.cnki.1008-2786.000308]
[9]陈吉煜,刘 勇*,何 东.山地城市的蔓延特征分析--以重庆主城区为例[J].山地学报,2018,(03):432.[doi:10.16089/j.cnki.1008-2786.000339]
 CHEN Jiyu,LIU Yong *,HE Dong.Characteristics of Urban Sprawl in Mountainous Cities: A Case of Central Chongqing[J].Mountain Research,2018,(1):432.[doi:10.16089/j.cnki.1008-2786.000339]
[10]高洪波*,王雨枫,王 颂.山地公共建筑生态设计的基本原则及其应用--以信阳浉河区为例[J].山地学报,2018,(03):441.[doi:10.16089/j.cnki.1008-2786.000340]
 GAO Hongbo*,WANG Yufeng,WANG Song.Basic Principles of Ecological Design for Mountain Public Architecture and Its Applications -A Case Study of Shihe District of Xinyang, Henan Province, China[J].Mountain Research,2018,(1):441.[doi:10.16089/j.cnki.1008-2786.000340]

备注/Memo

备注/Memo:
收稿日期(Received date): 2022-08-21; 改回日期(Accepted date):2023-02-18
基金项目(Foundation item): 国家重点研发计划(2018YFD1100804)。[National Key Research and Development Program(2018YFD1100804)]
作者简介(Biography): 黄勇(1976-),男,教授,博士,主要研究方向:山地人居网络,山地城市规划设计。[HUANG Yong(1976-), male, professor, Ph.D., specialized in mountain habitat network, planning and design of mountainous cities] E-mail: hyong@cqu.edu.cn

更新日期/Last Update: 2023-01-30