GUAN Zengyana,SHI Songlina*,JIN Yaninga,et al.Response of Radial Growth of Abies fabri at Different Ages to Climate Change in Mount Emei, Sichuan, China[J].Mountain Research,2023,(1):56-67.[doi:10.16089/j.cnki.1008-2786.000730]





Response of Radial Growth of Abies fabri at Different Ages to Climate Change in Mount Emei, Sichuan, China
(1.成都理工大学 a.旅游与城乡规划学院; b.生态环境学院,成都 610059; 2.四川省社会科学重点研究基地(扩展)国家公园研究中心,成都 610059; 3.峨眉山林业管理所 峨眉山森林生态系统国家定位观测研究站,四川 峨眉山 614201)
GUAN Zengyan1a SHI Songlin1a2* JIN Yaning1a CHEN Shengbin1b XIA Zhonglin3
(1. a. College of Tourism and Urban-Rural Planning; b. College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China; 2. Research Center of National Park, Sichuan Key Research Base for Social Sciences, Chengdu 610059, China; 3. Emei Mountain Station of Forest Ecosystem Studies, Forestry Management Agency of Mount Emei, Emeishan 614201, Sichuan, China)
树木年轮 生态弹性 极端干旱 冷杉 峨眉山
tree ring ecological resilience extreme drought Abies fabri Mount Emei
准确评估森林对极端气候事件的生态弹性有助于预测森林对未来气候变化的适应能力。林龄是影响树木生长对气候响应敏感性的重要因素,目前关于不同林龄树木对极端干旱事件的生态弹性研究有限。本研究以四川峨眉山冷杉(Abies fabri)林为对象,采用树轮生态学方法获取冷杉幼龄林(<60 a)、近熟林(60~80 a)和成熟林(>80 a)的年轮宽度、年轮宽度指数和断面积增量,分析不同树龄冷杉径向生长对气候变化响应的敏感性及其对3次干旱事件(2007年、2010年和2012年)的生态弹性差异。结果表明:(1)不同年龄冷杉径向生长对气候变化的响应特征存在明显差异,幼树径向生长与温度、水分和光照因子的相关性最强,温度升高会抑制幼龄林和近熟林冷杉径向生长,而对成熟林的生长影响较小。(2)不同年龄冷杉对干旱事件的响应不一致,抵抗力由大到小依次为幼龄林、近熟林、成熟林,干旱事件后恢复力由大到小为成熟林、近熟林、幼龄林。(3)各年龄组冷杉的生态弹性均有所增加,其中成熟林最大。未来气候变化背景下,峨眉山幼龄冷杉更容易受气候变暖和频发的极端干旱事件的影响而发生生长衰退,将潜在改变森林动态。本研究可为预测冷杉对未来气候变化的生态适应性及区域森林保护与管理提供科学依据。
A scientific assessment of the ecological resilience of forests to climate extremities can help estimate the adaptability potential of forests to unexpected climate change. Forest age is an important factor, which largely decides the sensitivity of tree growth to climate alteration, but there was still a lack of a wide knowledge of the ecological resilience of trees with varied ages to drought calamities.In this study, samples of Abis fabri forests in Mount Emei of China were selected for control-experiment. It divided these samples into three groups, namely young forest group(<60 a), near mature forest group(60~80 a)and mature forest group(>80 a). Tree-ring width, tree-ring width index and basal area increment were measured and calculated in terms of dendroecology method. The sensitivity of radial growth of the three groups to climate change were compared, and their eco-resilience differentiation in response to three droughts in 2007, 2010 and 2012, separately, were analyzed.Results show that:(1)The radial growths of fir forests at varied ages in response to climate changes exhibited remarkable difference. The radial growth of samplings had the strongest correlation with temperature, moisture and light. Rising temperature would inhibit the radial growth of fir in young and near-mature forests, but had little effect on the growth of mature forests.(2)The response capacity of fir in the three groups to drought events were inconsistent according to the radial growth. They can be arranged in descending order of resistance as young forest, near mature forest and mature forest, and vice versa for their resilience after drought events.(3)The eco-resilience of fir increased in all groups after drought events, and the mature forest showed the strongest resilience. The radial growth of young forest in Mount Emei was possible to decline affected by climate warming and frequent extreme drought events, which would potentially change the forest dynamics under climate change. This study is helpful to understand the ecological adaptability of fir forests to future climate change and provides scientific support for regional forest protection and management.


[1] RAHMAN M, ISLAM M, BRÄUNING A. Species-specific growth resilience to drought in a mixed semi-deciduous tropical moist forest in South Asia [J]. Forest Ecology and Management, 2019, 433: 487-496. DOI: 10.1016/j.foreco.2018.11.034
[2] GAZOL A, CAMARERO J J, VICENTE-SERRANO S M, et al. Forest resilience to drought varies across biomes [J]. Global Change Biology, 2018, 24(5): 2143-2158. DOI: 10.1111/gcb.14082
[3] 岳伟鹏, 陈峰, 袁玉江, 等. 气候变暖背景下云南西北部大果红杉(Larix potaninii)径向生长衰退及其气候驱动因子分析[J]. 生态学报, 2022, 42(6): 2331-2341. [YUE Weipeng, CHEN Feng, YUAN Yujiang, et al. The decline in radial growth of Larix potaninii in northwestern Yunnan and its driving factors under the background of climate warming [J]. Acta Ecologica Sinica, 2022, 42(6): 2331-2341] DOI: 10.5846/stxb202011303065
[4] 薛儒鸿, 焦亮, 刘小萍, 等. 新疆阿尔泰山不同海拔西伯利亚落叶松径向生长对气候变化的响应稳定性评价[J]. 生态学杂志, 2021, 40(5):1275-1284. [XUE Ruhong, JIAO Liang, LIU Xiaoping, et al. Evaluation of the stability of the radial growth of Larix sibirica at different altitudes in response to climate change in Altai Mountains, Xinjiang [J]. Chinese Journal of Ecology, 2021, 40(5):1275-1284] DOI: 10.13292/j.1000-4890.202105.021
[5] WANG Zhou, LYU Lixin, LIU Weixing, et al. Topographic patterns of forest decline as detected from tree rings and NDVI [J]. Catena, 2021, 198: 105011. DOI: 10.1016/j.catena.2020.105011
[6] HESSE B D, HARTMANN H, RÖTZER T, et al. Mature beech and spruce trees under drought: Higher C investment in reproduction at the expense of whole-tree NSC stores [J]. Environmental and Experimental Botany, 2021, 191: 104615. DOI: 10.1016/j.envexpbot.2021.104615
[7] GEA-IZQUIERDO G, VIGUERA B, CABRERA M, et al. Drought induced decline could portend widespread pine mortality at the xeric ecotone in managed mediterranean pine-oak woodlands [J]. Forest Ecology and Management, 2014, 320: 70-82. DOI: 10.1016/j.foreco.2014.02.025
[8] SERRA-MALUQUER X, MENCUCCINI M, MARTI'NEZ-VILALTA J. Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula [J]. Oecologia, 2018, 187(1): 343-354. DOI: 10.1007/s00442-018-4118-2
[9] ZHANG Qibin, FANG Ouya. Tree rings circle an abrupt shift in climate [J]. Science, 2020, 370(6520): 1037-1038. DOI: 10.1126/science.abf1700
[10] LONGO M, KNOX R G, LEVINE N M, et al. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts [J]. New Phytologist, 2018, 219(3): 914-931. DOI: 10.1111/nph.15185
[11] HOLLUNDER R K, MARIOTTE P, CARRIJO T T, et al. Topography and vegetation structure mediate drought impacts on the understory of the South American Atlantic Forest [J]. Science of the Total Environment, 2021, 766: 144234. DOI: 10.1016/j.scitotenv.2020.144234
[12] 张齐兵, 方欧娅, 吕立新. 青藏高原树木年轮生态学研究[M]. 北京: 科学出版社, 2019: 19-37. [ZHANG Qibing, FANG Ouya, LYU Lixin. Tree ring ecology of Qinghai-Tibet Plateau [M]. Beijing: Science Press, 2019: 19-37]
[13] 刘庆, 吴彦, 何海. 中国西南亚高山针叶林的生态学问题[J]. 世界科技研究与发展, 2001, 23(2): 63-69. [LIU Qing, WU Yan, HE Hai. Ecological problems of subalpine coniferous forest in the southwest of China [J]. World Sci-tech Research and Development, 2001, 23(2): 63-69] DOI: 10.16507/j.issn.1006-6055.2001.02.024
[14] 申佳艳, 李帅锋, 黄小波, 等. 金沙江流域不同海拔处云南松生态弹性及生长衰退过程[J]. 林业科学, 2020, 56(6): 1-11. [SHEN Jiayan, LI Shuaifeng, HUANG Xiaobo, et al. Ecological resilience and growth degradation of Pinus yunnanensis at different altitudes in Jinsha River Basin [J]. Scientia Silvae Sinicae, 2020, 56(6): 1-11] DOI: 10.11707/j.1001-7488.20200601
[15] SHI Chunming, SCHNEIDER L, HU Yuan, et al. Warming-induced unprecedented high-elevation forest growth over the monsoonal Tibetan Plateau [J]. Environmental Research Letters, 2020, 15(5): 054011. DOI: 10.1088/1748-9326/ab7b9b
[16] SHI Songlin, LIU Guohua, LI Zongshan, et al. Elevation-dependent growth trends of forests as affected by climate warming in the southeastern Tibetan Plateau [J]. Forest Ecology and Management, 2021, 498: 119551. DOI: 10.1016/j.foreco.2021.119551
[17] SHEN Jiayan, LI Zongshan, GAO Chengjie, et al. Radial growth response of Pinus yunnanensis to rising temperature and drought stress on the Yunnan Plateau, southwestern China [J]. Forest Ecology and Management, 2020, 474: 118357. DOI: 10.1016/j.foreco.2020.118357
[18] WANG Wenzhi, JIA Min, WANG Genxu, et al. Rapid warming forces contrasting growth trends of subalpine fir(Abies fabri)at higher- and lower-elevations in the eastern Tibetan Plateau [J]. Forest Ecology and Management, 2017, 402: 135-144. DOI: 10.1016/j.foreco.2017.07.043
[19] 石松林, 靳甜甜, 刘国华, 等. 气候变暖抑制西藏拉萨河大果圆柏树木生长[J]. 生态学报, 2018, 38(24): 8964-8972. [SHI Songlin, JIN Tiantian, LIU Guohua, et al. Climate warming decelerates growth of Sabina tibetica in Lhasa River area of Tibet [J]. Acta Ecologica Sinica, 2018, 38(24): 8964-8972] DOI: 10.5846/stxb201807131522
[20] WU Guoju, XU Guobao, CHEN Tuo, et al. Age-dependent tree-ring growth responses of Schrenk spruce(Picea schrenkiana)to climate: A case study in the Tianshan Mountain, China [J]. Dendrochronologia, 2013, 31(4): 318-326. DOI: 10.1016/j.dendro.2013.01.001
[21] 王彬, 于澎涛, 于艺鹏, 等. 祁连山不同年龄青海云杉径向生长对气候变化的响应[J]. 林业科学, 2021, 57(3): 1-8. [WANG Bin, YU Pengtao, YU Yipeng, et al. Response of radial growth of Qinghai Spruce at different ages to climate change in Qilian Mountains, northwestern China [J]. Scientia Silvae Sinicae, 2021, 57(3): 1-8] DOI: 10.11707/j.1001-7488.20210301
[22] SCHUSTER R, OBERHUBER W. Age-dependent climate-growth relationships and regeneration of Picea abies in a drought-prone mixed-coniferous forest in the Alps [J]. Canadian Journal of Forest Research, 2013, 43(7): 609-618. DOI: 10.1139/cjfr-2012-0426
[23] 赵志江, 康东伟, 李俊清. 川西亚高山不同年龄紫果云杉径向生长对气候因子的响应[J]. 生态学报, 2016, 36(1): 173-179. [ZHAO Zhijiang, KANG Dongwei, LI Junqing, et al. Age-dependent radial growth responses of Picea purpurea to climatic factors in the subalpine region of western Sichuan province, China [J]. Acta Ecologica Sinica, 2016, 36(1): 173-179] DOI: 10.5846/stxb201409121815
[24] FANG Keyan, CHEN Dan, GOU Xiaohua, et al. Influence of non-climatic factors on the relationships between tree growth and climate over the Chinese Loess Plateau [J]. Global and Planetary Change, 2015, 132: 54-63. DOI: 10.1016/j.gloplacha.2015.06.008
[25] 王晓明, 赵秀海, 高露双, 等. 长白山北坡不同年龄红松年表及其对气候的响应[J]. 生态学报, 2011, 31(21): 6378-6387. [WANG Xiaoming, ZHAO Xiuhai, GAO Lushuang, et al. Age-dependent growth responses of Pinus koraiensis to climate in the north slope of Changbai Mountain, northeastern China [J]. Acta Ecologica Sinica, 2011, 31(21): 6378-6387]
[26] FANG Ouya, ZHANG Qibin. Tree resilience to drought increases in the Tibetan Plateau [J]. Global Change Biology, 2018, 25(1): 245-253. DOI: 10.1111/gcb.14470
[27] 曹新光, 胡红兵, 李颖俊, 等. 亚热带人工和天然马尾松、杉木林生长对干旱的生态弹性差异[J]. 应用生态学报, 2021, 32(10): 3531-3538. [CAO Xinguang, HU Hongbing, LI Yingjun, et al. Differences in the ecological resilience of planted and natural Pinus massoniana and Cunninghamia lanceolata forest in response to drought in subtropical China [J]. Chinese Journal of Applied Ecology, 2021, 32(10): 3531-3538] DOI: 10.13287/j.1001-9332.202110.035
[28] ZHANG Xiao, FAN Zhaofei, SHI Zhongjie, et al. Tree characteristics and drought severity modulate the growth resilience of natural Mongolian pine to extreme drought episodes [J]. Science of the Total Environment, 2022, 830: 154742. DOI: 10.1016/j.scitotenv.2022.154742
[29] LUCAS-BORJA M E, BOSE A K, ANDIVIA E, et al. Assessing tree drought resistance and climate-growth relationships under different tree age classes in a Pinus nigra Arn. ssp. salzmannii Forest [J]. Forests, 2021, 12(9): 1161. DOI: 10.3390/f12091161
[30] 白海, 许倩, 石松林, 等. 峨眉山不同海拔冷杉径向生长对气候变化的响应[J]. 中南林业科技大学学报, 2020, 40(5): 128-138. [BAI Hai, XU Qian, SHI Songlin, et al. Radial growth of Abies fabri response to climate change along an altitudinal transect in the Mount Emei [J]. Journal of Central South University of Forestry and Technology, 2020, 40(5): 128-138] DOI: 10.14067/j.cnki.1673-923x.2020.05.015
[31] PRIMICIA I, CAMARERO J J, JANDA P, et al. Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate [J]. Forest Ecology and Management, 2015, 354: 77-86. DOI: 10.1016/j.foreco.2015.06.034
[32] HOLMES R L. Computer assisted quality control in tree-ring dating and measurements [J]. Tree-Ring Bulle, 1983(43): 69-78.
[33] LY/T2908-2017. 主要树种龄级与龄组划分 [S]. 北京: 国家林业局, 2017. [LY/T2908-2017. Regulations for age-class and age-group division of main tree-species [S]. Beijing: State Forestry Administration, 2017]
[34] BUNN A G. A dendrochronology program library in R(dplR)[J]. Dendrochronologia, 2008, 26: 115-124.
[35] NOWACKI G J, ABRAMS M D. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks [J]. Ecological Monographs, 1997, 67(2): 225-249. DOI: 10.1890/0012-9615(1997)067[0225:RGACFR]2.0.CO; 2
[36] LLORET F, KEELING E G, SALA A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests [J]. Oikos, 2011, 120(12): 1909-1920. DOI: 10.1111/j.1600-0706.2011.19372.x
[37] PENG Jianfeng, PENG Kunyu, LI Jinbao. Climate-growth response of Chinese white pine(Pinus armandii)at different age groups in the Baiyunshan National Nature Reserve, central China [J]. Dendrochronologia, 2018, 49: 102-109. DOI: 10.1016/j.dendro.2018.02.004
[38] DAY M E, GREENWOOD M S, WHITE A S. Age-related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age [J]. Tree Physiology, 2001, 21(16): 1195-1204. DOI: 10.1093/treephys/21.16.1195
[39] BOND B J. Age-related changes in photosynthesis of woody plants [J]. Trends Plant Science, 2000, 5(8): 349-353. DOI: 10.1016/s1360-1385(00)01691-5
[40] KOLB T E, STONE J E. Differences in leaf gas exchange and water relations among species and tree sizes in an Arizona pine-oak forest [J]. Tree Physiology, 2000, 20(1): 1-12. DOI: 10.1093/treephys/20.1.1
[41] WANG Xiaochun, PEDERSON N, CHEN Zhenju, et al. Recent rising temperatures drive younger and southern Korean pine growth decline [J]. Science of the Total Environment, 2019, 649: 1105-1116. DOI: 10.1016/j.scitotenv.2018.08.393
[42] WU Xiuchen, LIU Hongyan, WANG Yufu, et al. Prolonged limitation of tree growth due to warmer spring in semi-arid mountain forests of Tianshan, northwest China [J]. Environmental Research Letters, 2013, 8(2): 024016. DOI: 10.1088/1748-9326/8/2/024016
[43] SUAREZ M L, GHERMANDI L, KITZBERGER T. Factors predisposing episodic drought-induced tree mortality in Nothofagus-site, climatic sensitivity and growth trends [J]. Journal of Ecology, 2004, 92(6): 954-966. DOI: 10.1111/j.1365-2745.2004.00941.x
[44] ZHOU Guoyi, PENG Chuanghui, LI Yuelin, et al. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in southern China [J]. Global Change Biology, 2013, 19(4): 1197-1210. DOI: 10.1111/gcb.12128
[45] NEPSTAD D C, TOHVER I M, RAY D, et al. Mortality of large trees and lianas following experimental drought in an Amazon forest [J]. Ecology, 2007, 88(9): 2259-2269. DOI: 10.1890/06-1046.1
[46] OLSON M E, SORIANO D, ROSELL J A, et al. Plant height and hydraulic vulnerability to drought and cold [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(29): 7551-7556. DOI: 10.1073/pnas.1721728115
[47] JIAO Liang, LIU Xiaoping, WANG Shengjie, et al. Radial growth adaptability to drought in different age groups of Picea schrenkiana Fisch. & C.A. Mey in the Tianshan Mountains of northwestern China [J]. Forests, 2020, 11(4): 455. DOI: 10.3390/f11040455
[48] MADRIGAL-GONZÁLEZ J, ZAVALA M A. Competition and tree age modulated last century pine growth responses to high frequency of dry years in a water limited forest ecosystem [J]. Agricultural and Forest Meteorology, 2014, 192-193: 18-26. DOI: 10.1016/j.agrformet.2014.02.011
[49] 刘祖桂. 峨眉山金顶冷杉死亡与华藏寺火灾关系的探讨[J]. 生态学杂志, 1990, 9(1): 15-18. [LIU Zugui. Relations between fir mortality and Huazang Temple conflagration in Jinding of the Emei Mountain [J]. Journal of Ecology, 1990, 9(1): 15-18] DOI: 10.13292/j.1000-4890.0004
[50] GAZOL A, CAMARERO J J, ANDEREGG W R L, et al. Impacts of droughts on the growth resilience of Northern Hemisphere forests [J]. Global Ecology and Biogeography, 2017, 26(2): 166-176. DOI: 10.1111/geb.12526
[51] AU T F, MAXWELL J T, ROBESON S M, et al. Younger trees in the upper canopy are more sensitive but also more resilient to drought [J]. Nature Climate Change, 2022, 12(12): 1168-1174. DOI: 10.1038/s41558-022-01528-w
[52] PERI P L, GARGAGLIONE V, PASTUR G M. Dynamics of above- and below-ground biomass and nutrient accumulation in an age sequence of Nothofagus antarctica forest of southern Patagonia [J]. Forest Ecology and Management, 2006, 233(1): 85-99. DOI: 10.1016/j.foreco.2006.06.009


 HONG Ting,BAI Shibiao,WANG Jian,et al.Reconstruct the Activity Years of Jiufangshan Landslide by Means of Treerings[J].Mountain Research,2012,(1):57.
 SHANG Huaming,WEI Wenshou,et al.Early Summer Temperature History in Northeastern Kazakhstan during the Last 310 Years Recorded by Tree Rings[J].Mountain Research,2011,(1):402.
 SHANG Huaming,HONG Jianchang,ZHANG Ruibo,et al.Tree-ring Recorded 522-year Precipitation from Previous October to May in Northeastern Tibet, China[J].Mountain Research,2018,(1):821.[doi:10.16089/j.cnki.1008-2786.000378]


收稿日期(Received date): 2022-10-17; 改回日期(Accepted date):2023-02-14
基金项目(Foundation item): 第二次青藏高原综合科学考察研究(2019QZKK0402)。[Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0402)]
作者简介(Biography): 管增艳(1997-),女,山东潍坊人,硕士研究生,主要研究方向:全球变化。[GUAN Zengyan(1997-), female, born in Weifang, Shandong province, M.Sc. candidate, research on global change] E-mail: guanzengyan@stu.cdut.edu.cn
*通讯作者(Corresponding author): 石松林(1986-),男,四川巴中人,博士,副教授,主要研究方向:全球变化。[SHI Songlin(1986-), male, born in Bazhong, Sichuan province, Ph.D., associate professor, research on global change] E-mail: shisonglin17@cdut.edu.cn

更新日期/Last Update: 2023-01-30