[1]汪 涛ab,陈亚梅ab,廖咏梅ab,等.1990—2020年西藏天然林分布与景观格局的动态变化[J].山地学报,2022,(5):682-693.[doi:10.16089/j.cnki.1008-2786.000703]
 WANG Taoab,CHEN Yameiab,LIAO Yongmeiab,et al.Dynamic Changes in the Distribution of Natural Forests in Tibet from 1990 to 2020 and Related Landscape Pattern Evolution[J].Mountain Research,2022,(5):682-693.[doi:10.16089/j.cnki.1008-2786.000703]
点击复制

1990—2020年西藏天然林分布与景观格局的动态变化
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第5期
页码:
682-693
栏目:
山地环境
出版日期:
2022-11-20

文章信息/Info

Title:
Dynamic Changes in the Distribution of Natural Forests in Tibet from 1990 to 2020 and Related Landscape Pattern Evolution
文章编号:
1008-2786-(2022)5-682-12
作者:
汪 涛1a1b陈亚梅1a1b廖咏梅1a1b张 胜2胥 晓1a1b*
(1.西华师范大学 a. 生命科学学院; b.西南野生动植物资源保护教育部重点实验室,四川 南充 637009; 2.四川大学 生命科学学院,成都 610065)
Author(s):
WANG Tao1a1b CHEN Yamei1a1b LIAO Yongmei1a1bZHANG Sheng2 XU Xiao1a1b*
(1. a. College of Life Science; b. Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education; China West Normal University, Nanchong 637009, Sichuan, China; 2. College of Life Science, Sichuan University, Chengdu 610065, China)
关键词:
西藏自治区 天然林 Google Earth Engine(GEE) 特征集构建与优化 景观格局
Keywords:
Tibet Autonomous Region natural forests Google Earth Engine(GEE) feature sets construction and optimization landscape pattern
分类号:
S717
DOI:
10.16089/j.cnki.1008-2786.000703
文献标志码:
A
摘要:
西藏自治区天然林是我国青藏高原生态屏障的主要组成部分,在维持生态平衡和调节气候等方面发挥着重要作用。掌握该区域天然林的分布状况及景观特征在长时间尺度上的变化尤为必要。已有研究主要集中在天然林和土壤理化性质间的关系、天然林保护现状等方面,受限于大尺度、长时序遥感数据分析处理以及实地调查困难,对西藏自治区天然林景观格局方面的研究尚少。为揭示西藏自治区近30年来天然林分布与景观格局的动态变化规律,本文基于Google Earth Engine(GEE)平台和Landsat数据集,构建归一化植被指数(NDVI)时间序列曲线和优化后分类特征集,参与模型分类,获得最优分类结果,并分析了该区域的天然林分布和景观格局动态变化。结果表明:(1)优化后的光谱特征集、纹理特征集和地形特征集组合的RF模型分类精度最高;(2)西藏自治区天然林主要分布在山南市、林芝市和昌都市,景观优势度整体有所增大,其面积在近30年不断增加,年均增长率约0.94%,其中昌都市天然林面积增幅最大;(3)近30年来,西藏自治区天然林整体破碎化指标值和复杂化程度增大,但连通性和聚集性程度较稳定。其中拉萨市破碎化指标值和复杂化程度增速最快,昌都市破碎化指标值和复杂化程度最大,而林芝市和阿里地区破碎化指标值趋向减小且趋向规则化。上述结果证实了近30年来西藏自治区的天然林保护总体上取得较好的效果,天然林面积明显增加,但由于天然林斑块数量增多导致整体复杂化增大。研究结果可为西藏自治区天然林保护与恢复工作的实施提供科学支撑。
Abstract:
Forests in the Tibet Plateau constitute an essential ecological barrier, which plays an important role in ecological balance and climate regulation. The distribution of natural forests and the landscape evolution in the Tibet Plateau had not yet been carefully addressed by scientists and observed on a long-time scale. Past studies concerned about the relationship between natural forests and soil physical and chemical properties, and the situation of natural forests protection, but little attention to the evaluation of landscape pattern, mostly because of difficulties in analyzing long time series remote sensing data or data on large geographical scale, and low accessibility in desolate areas. In this study, it conducted a comprehensive investigation on the distribution of natural forests and the landscape evolution in Tibet based on the Google Earth Engine(GEE)and Landsat dataset. Normalized difference vegetation index(NDVI)time series curve and optimized classification feature set was constructed for model classification and concluded optimal classification. The dynamic changes of natural forests distribution and landscape pattern evolution were analyzed, and the following results are obtained:(1)The classification accuracy of RF model with optimized spectral, textural and terrain features sets was the highest;(2)Natural forests in Tibet were mainly distributed at Shannan, Nyingchi and Qamdo. The landscape dominance degree had increased on the whole, and the area of natural forests has increased continuously for the past 30 years, with an average annual growth rate of about 0.94%. Particularly, the area of natural forests increased at the most occurring at Qamdo.(3)For the past 30 years, the fragmentation index and complexity degree of natural forests has increased in Tibet, but the degree of connectivity and aggregation remained relatively stable. Moreover, the fragmentation index and complexity degree was the largest at Qamdo and increased fastest at Lhasa, respectively, while the fragmentation index at Nyingchi and Ngari tended to decrease and became regular. These results confirm that the protection of natural forests has generally achieved good results in Tibet for the past 30 years, demonstrating by the significant increase in the coverage of natural forests; However, due to the increase in the number of natural forests patches, the overall complexity also increased. These results can provide scientific support for the protection and restoration of natural forests in Tibet Autonomous Region.

参考文献/References:

[1] 刘亚培,陈绍志,赵荣,等. 我国天然林保护修复研究概述 [J]. 世界林业研究,2022,35(1):82-87. [LIU Yapei, CHEN Shaozhi, ZHAO Rong, et al. Researches on protection and restoration of natural forests in China [J]. World Forestry Research, 2022, 35(1): 82-87] DOI: 10.13348/j.cnki.sjlyyj.2021.0091.y
[2] 刘世荣,庞勇,张会儒,等. 中国天然林资源保护工程综合评价指标体系与评估方法[J]. 生态学报,2021,41(13):5067-5079. [LIU Shirong, PANG Yong, ZHANG Huiru, et al. Evaluation indictor system and method designed for natural forest protection program of China [J]. Acta Ecologica Sinica, 2021, 41(13): 5067-5079] DOI: 10.5846/stxb202103040591
[3] 张乐勤,荣慧芳,许杨,等. 九华山森林生态系统生态服务价值评估[J]. 山地学报,2011,29(3):291-298. [ZHANG Leqin, RONG Huifang, XU Yang, et al. Evaluation research of the service value of the forest ecosystem in Jiuhua mountain, Anhui [J]. Mountain Research, 2011, 29(3): 291-298] DOI: 10.16089/j.cnki.1008-2786.2011.03.004
[4] 沈钰仟,肖燚,欧阳志云,等. 基于生态系统质量的水源涵养服务评估—以西南五省为例[J]. 山地学报,2020,38(6):816-828. [SHEN Yuqian, XIAO Yi, OUYANG Zhiyun, et al. Water conservation service evaluation based on ecosystem quality in southwestern China [J]. Mountain Research, 2020, 38(6):816-828] DOI: 10.16089/j.cnki.1008-2786.000558
[5] 吴强. 川西北高山/亚高山主要森林土壤水土保持功能研究[D]. 成都:四川农业大学,2017:34-41. [WU Qiang. Soil and water conservation function of alpine/subalpine forests in northwest Sichuan [D]. Chengdu: Sichuan Agricultural University, 2017:34-41]
[6] 兰洁,雷相东,何潇,等. 吉林省天然阔叶混交林生态系统多功能性及驱动因素[J]. 生态学报,2021,41(13):5128-5141. [LAN Jie, LEI Xiangdong, HE Xiao, et al. Multi-functionality of natural mixed broad-leaved forests and driving forces in Jilin province [J]. Acta Ecologica Sinica, 2021, 41(13): 5128- 5141] DOI: 10.5846/stxb 202101290310
[7] 陈蓬,闫光锋. 保护西藏天然林资源 构筑青藏高原生态安全屏障[J]. 林业经济,2010(4):7-10. [CHEN Peng, YAN Guangfeng. Protecting Tibet's natural resources and building ecological security barrier of Qinghai-Tibet plateau [J]. Forestry Economics, 2010(4): 7-10] DOI: 10.13843/ j.cnki.lyjj.2010.04.013
[8] 王建林,陶澜,吕振武. 西藏林芝云杉林凋落物的特征研究[J]. 植物生态学报,1998,22(6):566-570. [WANG Jianlin, TAO Lan, LV Zhenwu. Study on the characteristics of litterfall of picea likiangensis var. linzhiensis forest in Tibet [J]. Chinese Journal of Plant Ecology, 1998, 22(6): 566-570]
[9] 周晨霓,任德智,马和平,等. 西藏色季拉山两种典型天然林分土壤活性有机碳组分与土壤呼吸特征研究[J]. 环境科学学报,2015,35(2):557-563. [ZHOU Chenni, REN Dezhi, MA Heping, et al. Analysis of the active organic carbon components and soil respiration characteristics from two typical natural forests in Sygara mountains, Tibet, China [J]. Acta Scientiae Circumstantiae, 2015, 35(2): 557-563] DOI: 10.13671/j.hjkxxb.2014.0773
[10] 张敏. 西藏天然林资源保护工程现状及发展对策研究[J]. 林业科学,2005,41(2):186-190. [ZHANG Min. A study on the current status and development countermeasures of the natural forest resource protection projects in Tibet [J]. Scientia Silvae Sinicae, 2005, 41(2): 186-190] DOI: 10.11707/j.1001-7488.20050233
[11] 罗大庆,薛会英,边多. 论西藏的天然林保护与林业可持续发展[J]. 山地学报,2001,19(S1):152-156. [LUO Daqing, XUE Huiying, BIAN Duo. Discussion about protection of natural forest and sustainable forestry development in Tibet [J]. Mountain Research, 2001, 19(S1): 152-156] DOI: 10.16089/j.cnki.1008-2786.2001.s1.003
[12] 李妍妍,郑国强. 西藏天然林保护区景观格局分析[J]. 山东建筑大学学报,2017,32(5): 455-460+506. [LI Yanyan, ZHENG Guoqiang. Analysis of landscape pattern of forest protection area in Tibet [J]. Journal of Shandong Jianzhu University, 2017, 32(5): 455-460+506] DOI: 10.12077/sdjz.2017.32.05.008
[13] FINER M, NOVOA S, WEISSE M J, et al. Combating deforestation: From satellite to intervention [J]. Science, 2018, 360(6395): 1303-1305. DOI: 10.1126/science.aat1203
[14] DONCHYTS G, BAART F, WINSEMIUS H, et al. Earth's surface water change over the past 30 years [J]. Nature Climate Change, 2016, 6: 810-813. DOI: 10.1038/nclimate3111
[15] GONG Peng, LIU Han, ZHANG Meinan, et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 [J]. Science Bulletin, 2019, 64(6): 370-373. DOI: 10.1016/j.scib.2019.03.002
[16] GORELICK N, HANCHER M, DIXON M, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone [J]. Remote Sensing of Environment, 2017, 202: 18-27. DOI: 10.1016/j.rse.2017.06.031
[17] LIU Xiaoping, HU Guohua, CHEN Yimin, et al. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine platform [J]. Remote Sensing of Environment, 2018, 209: 227-239. DOI: 10.1016/j.rse.2018.02.055
[18] AMANI M, GHORBANIAN A, AHMADI S A, et al. Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5326-5350. DOI: 10.1109/JSTARS.2020.3021052
[19] 付东杰,肖寒,苏奋振,等. 遥感云计算平台发展及地球科学应用[J]. 遥感学报,2021,25(1):220-230. [FU Dongjie, XIAO Han, SU Fenzhen, et al. Remote sensing cloud computing platform development and earth science application [J]. National Remote Sensing Bulletin, 2021, 25(1): 220-230] DOI: 10.11834/jrs.20210447
[20] 刘睿,冯敏,孙九林,等. 基于环境减灾卫星CCD数据与决策树技术的植被分类研究[J]. 地理科学,2012,32(12):1488-1495. [LIU Rui, FENG Min, SUN Jiulin, et al. The vegetation classification based on HJ-CCD data and decision tree [J]. Scientia Geographic Sinica, 2012, 32(12): 1488-1495] DOI: 10.13249/j.cnki.sgs.2012.12.011
[21] QIAO Hailang, WU Mingquan, SHAKIR M, et al. Classification of small-scale eucalyptus plantations based on NDVI time series obtained from multiple high-resolution datasets [J]. Remote Sensing, 2016, 8(2): 117. DOI: 10.3390/rs8020117
[22] LI Xiaowen, STRAHLER A H. Geometric-optical modeling of a conifer forest canopy [J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, 23(5): 705-721. DOI: 10.1109/TGRS.1985.289389
[23] TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation [J]. Remote Sensing of Environment, 1979, 8(2): 127-150. DOI: 10.1016/0034-4257(79)90013-0
[24] FAN Xiang, SONG Yongze, ZHU Chuxin, et al. Estimating ecological responses to climatic variability on reclaimed and unmined lands using enhanced vegetation index [J]. Remote Sensing, 2021, 13(6): 1100. DOI: 10.3390/rs13061100
[25] 郭力娜,张梦华,张永彬,等. 唐山市区土地利用的Landsat 8影像分层分类[J]. 测绘科学,2017,42(10):88-94+125. [GUO Lina, ZHANG Menghua, ZHANG Yongbin, et al. Land use hierarchical classification based on Landsat 8 image in Tangshan city [J]. Science of Surveying and Mapping, 2017, 42(10): 88-94+125] DOI: 10.16251/j.cnki.1009-2307.2017.10.014
[26] GAO Bocai. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space [J]. Remote Sensing of Environment, 1996, 58(3): 257-266. DOI: 10.1016/S0034-4257(96)00067-3
[27] 赵静毅,陈继,吴青柏,等. 天山胜利达坂地区积雪分布特征[J]. 山地学报,2018,36(1):98-106. [ZHAO Jingyi, CHEN Ji, WU Qingbai, et al. Variation characteristic of snow cover in the Shenglidaban area, Tianshan mountains, China [J]. Mountain Research, 2018, 36(1): 98-106] DOI: 10.16089/j.cnki.1008-2786.000305
[28] 李一曼. 基于长时间序列Landsat影像的衡阳盆地人工林时空变化分析[D]. 北京:中国地质大学(北京),2020:31-32. [LI Yiman. Spatial-temporal variation of plantations in Hengyang based on Landsat time series analysis [D]. Beijing: China University Of Geosciences(Beijing), 2020:31-32] DOI: 10.27493/d.cnki.gzdzy.2020.000401
[29] 王志成. 基于Jeffries-Matusita距离的遥感影像最优对象构建分类算法及应用研究[D]. 烟台:中国科学院大学(中国科学院烟台海岸带研究所),2021: 35. [WANG Zhicheng. Studies on remote sensing image optimal object construction classification algorithm based on Jeffries-Matusita distance and its application [D]. Yantai: Yantai Insititute of Coastal Zone Research, Chinese Academy of Sciences, 2021: 35] DOI: 10.27841/d.cnki.gytha.2021.000017
[30] 朱曼,张立福,王楠,等. 基于Sentinel-2的UNVI植被指数及性能对比研究[J]. 遥感技术与应用,2021, 36(4):936-947. [ZHU Man, ZHANG Lifu, WANG Nan, et al. Comparative study on UNVI vegetation index and performance based on Sentinel-2 [J]. Remote Sensing Technology and Application, 2021, 36(4): 936-947] DOI: 10.11873/j.issn.1004-0323.2021.4.0936
[31] BREIMAN L, FRIEDMAN J H, OLSHEN R A, et al. Classification and regression trees [J]. Biometrics, 1984, 40(3): 874. DOI: 10.2307/2530946
[32] 李斌,李崇贵,李煜. 基于Sentinel-2数据的塞罕坝机械林场落叶松人工林提取[J]. 林业资源管理,2021,4(2):117-123. [LI Bin, LI Chonggui, LI Yu. Research on larch extraction in Saihanba mechanical forest farm based on Sentinel-2 data [J]. Forest Resources Management, 2021, 4(2): 117-123] DOI: 10.13466/j.cnki.lyzygl.2021.02.016
[33] 杨长坤,王崇倡,张鼎凯,等. 基于SVM的高分一号卫星影像分类[J]. 测绘与空间地理信息,2015,38(9):142-144. [YANG Changkun, WANG Chongchang, ZHANG Dingkai, et al. Classification of GF-1 satellite image based on SVM [J]. Geomatics and Spatial Information Technology, 2015, 38(9): 142-144] DOI: 10.3969/j.issn.1672-5867.2015.09.049
[34] 由珈齐,李明泽,范文义,等. 基于高光谱和激光雷达数据的林分类型识别[J]. 林业科学,2021,57(5):119-129. [YOU Jiaqi, LI Mingze, FAN Wenyi, et al. Stand type identification based on hyperspectral and LiDAR date [J]. Scientia Silvae Sinicae, 2021, 57(5): 119-129] DOI: 10.11707/j.1001-7488.20210511
[35] BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32. DOI: 10.1023/A:1010933404324
[36] 刘海娟,张婷,侍昊,等. 基于RF模型的高分辨率遥感影像分类评价[J]. 南京林业大学学报(自然科学版),2015,39(1): 99-103. [LIU Haijuan, ZHANG Ting, SHI Hao, et al. Classification evaluation on high resolution remote sensing image based on RF [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(1): 99-103] DOI: 10.3969/j.issn.1000-2006.2015.01.018
[37] 申振宇. 基于GEE的Landsat影像长时间序列数据的湟水流域土地利用/土地覆被分类及精度评估 [D]. 西宁: 青海师范大学,2020:39-40. [SHEN Zhenyu. Land use / land cover classification and accuracy evaluation for long time series Landsat images from 1987 to 2019 in the Huangshui river watershed [D]. Xining: Qinghai Normal University, 2020: 39-40] DOI: 10.27778/d.cnki.gqhzy.2020.000314
[38] 傅伯杰, 陈利顶, 马克明, 等. 景观生态学原理及应用(第二版)[M]. 北京:科学出版社,2011:55-113. [FU Bojie, CHEN Liding, MA Keming, et al. Principles and applications of landscape ecology(2nd edition)[M]. Beijing: Science Press, 2011: 55-113]
[39] 周爽,刘邵权,彭立. 成都市景观格局与生态系统服务的关联效应[J]. 山地学报,2021,39(2):262-274. [ZHOU Shuang, LIU Shaoquan, PENG Li. Correlation effect in the developing landscape patterns with changes in ecosystem services in Chengdu city, China [J]. Mountain Research, 2021, 39(2): 262-274] DOI: 10.16089/j.cnki.1008-2786.000593
[40] 庞勇,蒙诗栎,史锴源,等. 中国天然林保护工程区森林覆盖遥感监测[J]. 生态学报,2021,41(13):5080-5092. [PANG Yong, MENG Shili, SHI Kaiyuan, et al. Forest coverage monitoring in the natural forest protection project area of China [J]. Acta Ecologica Sinica, 2021, 41(13): 5080-5092] DOI: 10.5846/stxb202104301141
[41] 王晓春. 中国东北亚高山林线对全球气候变化的响应[D]. 哈尔滨:东北林业大学,2004:90-115. [WANG Xiaochun. Response of subalpine timberline in northeast China to global climate change [D]. Harbin: Northeast Forestry University, 2004: 90-115]
[42] GREENWOOD S, CHEN J C, CHEN C T, et al. Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region [J]. Global Change Biology, 2014, 20(12): 3756-3766. DOI: 10.1111/gcb.12710
[43] 邵佳怡,杜建会,李升发,等. 高山林线生态交错区木本植物幼苗分布特征、更新机制及其对气候变化的响应[J]. 应用生态学报,2019,30(8):2854-2864. [SHAO Jiayi, DU Jianhui, LI Shengfa, et al. Tree seedling distribution, regeneration mechanism and response to climate change in alpine treeline ecotone [J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2854-2864] DOI: 10.13287/j.1001-9332.201908.007
[44] TINGSTAD L, OLSEN S L, KLANDERUD K, et al. Temperature, precipitation and biotic interactions as determinants of tree seedling recruitment across the tree line ecotone [J]. Oecologia, 2016, 179(2): 599-608. DOI: 10.1007/s00442-015-3560-0
[45] MESHINEV T, APOSTOLOVA I, KOLEVA E S. Influence of warming on timberline rising: A case study on Pinus Peuce Griseb. in Bulgaria [J]. Phytocoenologia, 2000, 30(3-4): 431-438. DOI: 10.1127/phyto/30/2000/431
[46] 丁锐,史文娇. 1993—2017年气候变化对西藏谷物单产的定量影响[J]. 地理学报,2021,76(9):2174-2186. [DING Rui, SHI Wenjiao. Quantitative evaluation of the effects of climate change on cereal yields of Tibet during 1993-2017 [J]. Acta Geographica Sinica, 2021, 76(9): 2174-2186] DOI: 10.11821/dlxb202109010
[47] 宁静,杜国明,孟凡浩,等. 巴西热带雨林森林景观转化时空特征及破碎化分析[J]. 地理研究,2015,34(7):1235-1246. [NING Jing, DU Guoming, MENG Fanhao, et al. Transformation and fragmentation of tropical rainforest landscape in Brazil [J]. Geographical Research, 2015, 34(7): 1235-1246] DOI: 10.11821/dlyj201507004
[48] 杨国靖,肖笃宁. 森林景观格局分析及破碎化评价—以祁连山西水自然保护区为例[J]. 生态学杂志,2003,22(5):56-61. [YANG Guojing, XIAO Duning. Forest landscape pattern and fragmentation: A case study on Xishui natural reserve in Qilian mountain [J]. Chinese Journal of Ecology, 2003, 22(5): 56-61] DOI: 10.13292/j.1000-4890.2003.0107
[49] 何昭欣,张淼,吴炳方,等. Google Earth Engine支持下的江苏省夏收作物遥感提取[J]. 地球信息科学学报,2019,21(5):752-766. [HE Zhaoxin, ZHANG Miao, WU Bingfang, et al. Extraction of summer crop in Jiangsu based on Google Earth Engine [J]. Journal of Geo-information Science, 2019, 21(5): 752-766] DOI: 10.12082/dqxxkx.2019.180420
[50] 李鑫,翁卫松,李明诗. 太平洋西北部地区天然林景观动态及破碎化驱动力分析[J]. 南京林业大学学报(自然科学版),2021,45(3):174-182. [LI Xin, WENG Weisong, LI Mingshi. Assessing natural forest fragmentation process dynamics and its drivers in the Pacific northwest region, USA [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2021, 45(3): 174-182] DOI: 10.12302/j.issn.1000-2006.202006001
[51] 侯秀英,黄菲,赵青,等. 福建省森林丧失的时空格局演化及其驱动力机制[J]. 山地学报, 2020, 38(6): 829-840. [HOU Xiuying, HUANG Fei, ZHAO Qing, et al. Spatial-temporal pattern evolution and driving mechanism of forest loss in Fujian province, China [J]. Mountain Research, 2020, 38(6): 829-840] DOI: 10.16089/j.cnki.1008-2786.000559

相似文献/References:

[1]张建平,陈学华,邹学勇,等.西藏自治区生态环境问题及对策[J].山地学报,2001,(01):81.
[2]刘键,李祥妹,王小丹,等.西藏自治区农村经济发展制约因素分析[J].山地学报,2003,(S1):87.
[3]李祥妹,刘键.西藏自治区农牧民人均纯收入动态分析[J].山地学报,2003,(S1):81.
[4]李祥妹,刘键,王小丹,等.西藏自治区农牧民素质对收入的影响[J].山地学报,2003,(S1):92.
[5]刘键,李祥妹,钟祥浩.西藏自治区农牧民支出结构分析[J].山地学报,2003,(S1):97.
[6]范建容,钟祥浩,朱万泽,等.西藏自治区沙漠化控制重要性评价[J].山地学报,2003,(S1):123.
[7]刘键,李祥妹,钟祥浩.西藏自治区居民食品消费结构与粮食对策[J].山地学报,2004,(03):286.
[8]李立华,何毓成.青藏铁路对西藏旅游的影响分析[J].山地学报,2006,(05):628.
[9]熊俊楠,龚 颖,程维明*,等.西藏自治区近30年山洪灾害时空分布特征[J].山地学报,2018,(04):557.[doi:10.16089/j.cnki.1008-2786.000352]
 XIONG Junnan,GONG Ying,CHENG Weiming*,et al.Temporal and Spatial Distribution Characteristics of Mountain Floods in Tibet, China in Recent 30 Years[J].Mountain Research,2018,(5):557.[doi:10.16089/j.cnki.1008-2786.000352]

备注/Memo

备注/Memo:
收稿日期(Received date): 2022-04-15; 改回日期(Accepted date):2022-10-12
基金项目(Foundation item): 第二次青藏高原综合科学考察项目(2019QZKK0404)。[The Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0404)]
作者简介(Biography): 汪涛(1998-),男,四川蓬安人,硕士研究生,主要研究方向:景观生态。[WANG Tao(1998-), male, born in Pengan, Sichuan province, M.Sc. candidate, research on landscape ecology] E-mail:1318472906@qq.com
*通讯作者(Corresponding author): 胥晓(1973-),男,四川盐亭人,博士,教授,主要研究方向:植物生理生态。[XU Xiao(1973-), male, born in Yanting, Sichuan province, Ph.D., professor, research on plant physiology and ecology] E-mail: xuxiao_cwnu@163.com
更新日期/Last Update: 2022-10-30