[1]张闻多,熊东红*,张宝军,等.1980—2018年拉萨河径流泥沙变化[J].山地学报,2022,(5):670-681.[doi:10.16089/j.cnki.1008-2786.000702]
 ZHANG Wenduo,XIONG Donghong*,ZHANG Baojun,et al.Runoff and Related Sediment Migration in the Lhasa River of China from 1980 to 2018[J].Mountain Research,2022,(5):670-681.[doi:10.16089/j.cnki.1008-2786.000702]
点击复制

1980—2018年拉萨河径流泥沙变化
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第5期
页码:
670-681
栏目:
山地环境
出版日期:
2022-11-20

文章信息/Info

Title:
Runoff and Related Sediment Migration in the Lhasa River of China from 1980 to 2018
文章编号:
1008-2786-(2022)5-670-12
作者:
张闻多12熊东红1*张宝军1赵冬梅12刘 琳12秦小敏12
(1. 中国科学院、水利部成都山地灾害与环境研究所 山地灾害与地表过程重点实验室,成都 610041; 2. 中国科学院大学,北京 100049)
Author(s):
ZHANG Wenduo12XIONG Donghong1*ZHANG Baojun1 ZHAO Dongmei12LIU Lin12QIN Xiaomin12
(1. Key Laboratory of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu 610041, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
径流量 输沙量 双累积曲线 降水 人类活动 拉萨河
Keywords:
runoff sediment migration double cumulative curve precipitation human activity the Lhasa River
分类号:
P333.4
DOI:
10.16089/j.cnki.1008-2786.000702
文献标志码:
A
摘要:
径流量、输沙量一定程度上可反映流域的环境特性以及水土流失程度。拉萨河作为雅鲁藏布江的一级支流,对其输沙量的长期变化特征以及影响因素缺少精确定量评估。开展拉萨河水沙变化特征及归因识别研究,分析西藏农业及生活用水的格局,对区域生态保护和高质量发展具有重要意义。本文基于1980—2018年拉萨水文站径流泥沙和流域降水数据,采用Mann-Kendall趋势分析、小波分析和双累积曲线等方法分析了拉萨河近40 a的径流、输沙演变规律和周期性特征,并结合降水变化和人类活动探讨了流域水沙变化的主要影响因素。研究结果表明:(1)近40 a拉萨河年径流量和输沙量整体均表现为不显著的增加趋势,其多年变化呈多峰波动,逐年变化方向基本同步; 二者年内分配极为不均,汛期(5—10月)径流量占全年总径流的85.79%,输沙量占比达99.62%。(2)年径流量在2005年发生突减变化,年输沙量分别在1994年和2005年发生突增和突减变化。(3)拉萨河年径流量近40 a经历了3次丰-枯循环交替变化,15 a为主周期; 年输沙量经历了6次丰-枯循环交替变化,9 a为主周期。(4)拉萨河径流变化的主要影响因素由降水主导(1994—2004年)转变为人类活动(2005—2018年)占主导,而输沙变化的主要影响因素则表现相反; 随着不同阶段的变化,人类活动对径流输沙的贡献率逐步增大,生产建设工程、水库运行调度、生态工程实施是人类活动影响拉萨河水沙变化的主要表现形式。研究结果可为流域水资源分配以及水利工程建设提供科学依据,同时为流域生态工程实施成效评估提供数据支撑。
Abstract:
The runoff and related sediment migration in a valley substantially embody the changes in environment and the situation of water and soil loss. As one of the major tributaries of the Yarlung Zangbo River, the variations on runoff and sediment load in the Lhasa River are crucial to agricultural and domestic water consumption in the Tibet Autonomous Region. However, there was little quantitative analysis about the changes in sediment transportation and the associated influencing factors. In this study, it conducted an investigation into the long-term formation of runoff and sediment load for the past 40 years in the Lhasa River basin by examining data of 1980-2018 collected at field observations, including runoff and sediment load, meteorological data; The Mann-Kendall trend analysis, wavelet analysis, and double mass curve method were jointly used for the analysis of the impact of precipitation and human activities on variation in runoff and sediment load. The results showed that:(1)There was an increasing but insignificant tendency in annual runoff and sediment migration in the past 40 years, while they displayed the multi-peak fluctuation characteristics, and the annual change trend between runoff and sediment load was similarly synchronous; the intra-annual distribution of runoff and sediment load was extremely uneven, mainly concentrated in the monsoon season(from May to October), accounting for 85.79% and 99.62% of the annual total runoff and sediment discharge, respectively.(2)The annual runoff had a decreased abrupt point in 2005, and the annual sediment transportation increased and decreased dramatically in 1994 and 2005, respectively.(3)There have been three drying-wetting transitions in runoff with a main fluctuation period of 15 a during the last 40 years, and six drying-wetting transitions in sediment discharge with a main fluctuation cycle of 9 a.(4)The dominant factors of runoff change shifted from precipitation(1994-2004)to human activities(2005-2018)in the Lhasa River, which was the opposite for sediment load. With the change of period division, the proportion of human activities contribute to the runoff and sediment migration gradually increased, and the main manifestation of human activities affecting their changes included the large-scale implementation of engineering construction and ecological projects and operations of the constructed reservoirs. The study is of great significance for the protection of regional ecology and high-quality development and it can provide the scientific basis for allocation of water resources and construction of water conservancy projects, and also provide data support for effective evaluation of ecological engineering measures in the basin.

参考文献/References:

[1] 郭巧玲,陈新华,窦春锋,等. 近60年来窟野河全流域年径流变化及其影响因素分析研究[J]. 水土保持学报,2016, 30(3):90-95. [GUO Qiaoling, CHEN Xinhua, DOU Chunfeng, et al. Study on the variation of annual runoff and influencing factors in Kuye River during the past 60 years [J]. Journal of Soil and Water Conservation, 2016, 30(3):90-95] DOI: 10.13870/j.cnki.stbcxb.2016.03.017
[2] 许全喜,童辉. 近50年来长江水沙变化规律研究[J]. 水文,2012, 32(5):38-47+76. [XU Quanxi, TONG Hui. Characteristics of flow and sediment change in Yangtze River in recent 50 years [J]. Journal of China Hydrology, 2012, 32(5): 38-47+76]
[3] WALLING D E, FANG D. Recent trends in the suspended sediment loads of the world's rivers [J]. Global and Planetary Change, 2003, 39(1): 111-126. DOI: 10.1016/S0921-8181(03)00020-1
[4] 李怡颖,范继辉,廖莹. 近60年来嘉陵江流域水沙变化特征[J]. 山地学报,2020, 38(3):339-348. [LI Yiying, FAN Jihui, LIAO Ying. Variation characteristics of streamflow and sediment in the Jialing River Basin in the past 60 years, China [J]. Mountain Research, 2020, 38(3):339-348] DOI: 10.16089/j.cnki.1008-2786.000514
[5] LIU C, SUI J, WANG Z Y. Changes in runoff and sediment yield along the Yellow River during the period from 1950 to 2006 [J]. Journal of Environmental Informatics, 2008, 12(2): 129-139. DOI: 10.3808/jei.200800131
[6] 吴小宏,刘招,李强,等. 泾河长系列水沙变化规律与归因研究[J]. 水资源与水工程学报,2019, 30(6):144-149. [WU Xiaohong, LIU Zhao, LI Qiang, et al. Attribution analysis of long series runoff and sediment variation in Jinghe River [J]. Journal of Water Resources and Water Engineering, 2019, 30(6): 144-149] DOI: 1011705/j.issn.1672- 643X.2019.06.22
[7] 刘强,尉飞鸿,常康飞,等. 皇甫川流域水沙变化特征及其影响因素[J]. 干旱区研究,2021, 38(6):1506-1513. [LIU Qiang, YU Feihong, CHANG Kangfei, et al. Characteristics of water and sediment variation in the Huangfuchuan basin and its influencing factors [J]. Arid Zone Research, 2021, 38(6): 1506-1513] DOI: 10.13866/j.azr.2021.06.02
[8] 郑海金,方少文,杨洁,等. 近40年赣江年径流泥沙变化及影响因素分析[J]. 水土保持学报,2012, 26(1):28-32. [ZHENG Haijin, FANG Shaowen, YANG Jie, et al. Analysis on evolution characteristics and impacting factors of annual runoff and sediment in the Ganjiang River during 1970-2009 [J]. Journal of Soil and Water Conservation, 2012, 26(1):28-32] DOI: 10.13870/j.cnki.stbcxb.2012.01.004
[9] 董晓宁,田世民,张丽. 黄河源区水沙变化特征分析[J]. 人民黄河,2021, 43(6):21-27. [DONG Xiaoning, TIAN Shimin, ZHANG Li. Analysis of characteristics of runoff and sediment changes in the source area of the Yellow River [J]. Yellow River, 2021, 43(6):21-27] DOI: 103969/j.issn.1000-1379.2021.06.005
[10] 关颖慧, 王淑芝,温得平. 长江源区水沙变化特征及成因分析[J]. 泥沙研究,2021, 46(3):43-49+56. [GUAN Yinghui, WANG Shuzhi, WEN Deping. Processes of runoff and sediment load in the source regions of the Yangtze River [J]. Journal of Sediment Research, 2021, 46(3): 43-49+56] DOI: 10.16239/j.cnki.0468-155x.2021.03.007
[11] 赵广举,穆兴民,温仲明,等. 皇甫川流域降水和人类活动对水沙变化的定量分析[J]. 中国水土保持科学,2013, 11(4): 1-8. [ZHAO Guangju, MU Xingmin, WEN Zhongming, et al. Impacts of precipitation and human activities on streamflow and sediment load in the Huangfuchuan Watershed [J]. Science of Soil and Water Conservation, 2013, 11(4):1-8] DOI: 10.16843/j.sswc.2013.04.001
[12] 徐丽娇,胡泽勇,赵亚楠,等. 1961—2010年青藏高原气候变化特征分析[J]. 高原气象,2019, 38(5):911-919. [XU Lijiao, HU Zeyong, ZHAO Yanan, et al. Climate change characteristics in Qinghai-Tibetan Plateau during 1961-2010 [J]. Plateau Meteorology, 2019, 38(5): 911-919] DOI: 10.7522/j.issn.1000-0534.2018.00137
[13] 张凡,史晓楠,曾辰,等. 青藏高原河流输沙量变化与影响[J]. 中国科学院院刊,2019, 34(11):1274-1284. [ZHANG Fan, SHI Xiaonan, ZENG Chen, et al. Variation and influence of riverine sediment transport from Tibetan Plateau, China [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1274-1284] DOI: 10.16418/j.issn.1000-3045.2019.11.010
[14] 周海鹰,沈明希,陈杰,等. 塔里木河流域60 a来天然径流变化趋势分析[J]. 干旱区地理,2018, 41(2):221-229. [ZHOU Haiying, SHEN Mingxi, CHEN Jie, et al. Trends of natural runoffs in the Tarim River Basin during the last 60 years [J]. Arid Land Geography, 2018, 41(2): 221-229] DOI: 10.13826/j.cnki.cn65-1103/x.2018.02.001
[15] 张建云,刘九夫,金君良,等. 青藏高原水资源演变与趋势分析[J]. 中国科学院院刊,2019, 34(11):1264-1273. [ZHANG Jianyun, LIU Jiufu, JIN Junliang, et al. Evolution and trend of water resources in Qinghai-Tibet Plateau [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1264-1273] DOI: 10.16418/j.issn.1000-3045.2019.11.009
[16] 安宝晟,姚檀栋,郭燕红,等. 拉萨河流域典型区域保护、修复、治理技术示范体系[J]. 科学通报,2021,66(22):2775-2784. [AN Baosheng, YAO Tandong, GUO Yanhong, et al. Protection, restoration, and governance technology demonstration system in the typical regions of the Lhasa River Basin [J]. China Science Bulletin, 2021,66(22):2775-2784] DOI: 10.1360/TB-2021-0022
[17] 安宝晟,程国栋. 西藏生态足迹与承载力动态分析[J]. 生态学报,2014, 34(4):1002-1009. [AN Baosheng, CHENG Guodong. Dynamic analysis of the ecological footprint and carrying capacity of Tibet [J]. Acta Ecologica Sinica, 2014, 34(4):1002-1009] DOI: 10.5846/stxb201307051842
[18] 陈歆,靳甜甜,苏辉东,等. 拉萨河河流健康评价指标体系构建及应用[J]. 生态学报,2019, 39(3):799-809. [CHEN Xin, JIN Tiantian, SU Huidong, et al. Construction and application of health assessment index system for Lhasa River [J]. Acta Ecologica Sinica, 2019, 39(3): 799-809] DOI: 10.5846/stxb201809071919
[19] 张核真,卓玛,向飞,等. 1981—2013年气候因子变化对西藏拉萨河径流的影响[J]. 冰川冻土,2015, 37(5): 1304-1311. [ZHANG Hezhen, ZHUO Ma, XIANG Fei, et al. Effect of climate factors on the runoff over Lhasa River basin during 1981-2013 [J]. Journal of Glaciology and Geocryology, 2015, 37(5): 1304-1311] DOI: 10.7522/j.isnn.1000-0240.2015.0144
[20] 巩同梁,刘昌明,刘景时. 拉萨河冬季径流对气候变暖和冻土退化的响应[J]. 地理学报,2006, 61(5):519-526. [GONG Tongliang, LIU Changming, LIU Jingshi. Hydrological response of Lhasa River to climate change and permafrost degradation in Xizang [J]. Acta Geographica Sinica, 2006, 61(5): 519-526] DOI: 10.11821/xb200605008
[21] LIN Xuedong, ZHANG Yili, YAO Zhijun, et al. The trend on runoff variations in the Lhasa River Basin [J]. Journal of Geographical Sciences, 2008,18(1):95-106. DOI: 10.1007/s11442-008-0095-4
[22] 黄草,黄梦迪,胡国华,等. 梯级电站运行下拉萨河干流水文情势变异及归因分析[J]. 水资源与水工程学报,2020, 31(5):62-69+79. [HUANG Cao, HUANG Mengdi, HU Guohua, et al. Influence and attribution of the cascade hydropower station operation on the hydrological regimes in Lhasa River [J]. Journal of Water Resources and Water Engineering, 2020, 31(5): 62-69+79] DOI: 10.11705/j.issn.1672-643X.2020.05.10
[23] 黄草,黄梦迪,胡铁松,等. 拉萨河干流梯级水库库容—径流响应关系[J]. 水利水电科技进展,2020, 40(1):64-70. [HUANG Cao, HUANG Mengdi, HU Tiesong, et al. Storage-runoff response of cascade reservoirs in mainstream of Lhasa River [J]. Advances in Science and Technology of Water Resources, 2020,40(1):64-70] DOI: 10.3880/j.issn.1006-7647.2020.01.010
[24] 傅伯杰,欧阳志云,施鹏,等. 青藏高原生态安全屏障状况与保护对策[J]. 中国科学院院刊,2021, 36(11):1298-1306. [FU Bojie, OUYANG Zhiyun, SHI Peng, et al. Current condition and protection strategies of Qinghai-Tibet Plateau ecological security barrier [J]. Bulletin of Chinese Academy of Sciences, 2021, 36(11): 1298-1306] DOI: 10.16418/j.issn.1000-3045.20210919001
[25] 蔡俐辰,李志威,游宇驰,等. 1956—2016年拉萨河径流量变化及影响因素分析[J]. 水资源与水工程学报,2021, 32(2):90-96. [CAI Lichen, LI Zhiwei, YOU Yuchi, et al. Analysis of runoff changes in Lhasa River from 1956 to 2016 and the influencing factors [J]. Journal of Water Resources and Water Engineering, 2021,32(2):90-96] DOI: 10.11705/j.issn.1672-643X.2021.02.13
[26] 税燕萍,卢慧婷,王慧芳,等. 基于土地覆盖和NDVI变化的拉萨河流域生境质量评估[J]. 生态学报,2018, 38(24):8946-8954. [SHUI Yanping, LU Huiting, WANG Huifang, et al. Assessment of habitat quality on the basis of land cover and NDVI changes in Lhasa River Basin [J]. Acta Ecologica Sinica, 2018, 38(24): 8946-8954] DOI: 10.846/stxb201806141331
[27] 张圣微,雷玉平,姚琴,等. 土地覆被和气候变化对拉萨河流域径流量的影响[J]. 水资源保护,2010, 26(2):39-44. [ZHANG Shengwei, LEI Yuping, YAO Qin, et al. Runoff response to land cover and climate change in Lhasa River Basin [J]. Water Resources Protection, 2010, 26(2): 39-44]
[28] 李微,李昌彦,吴敦银,等. 1956—2011年鄱阳湖水沙特征及其变化规律分析[J]. 长江流域资源与环境,2015, 24(5):832-838. [LI Wei, LI Changyan, WU Dunyin, et al. Characteristics of runoff-sediment into and out of the PoYang Lake from 1956 to 2011 [J]. Resources and Environment in the Yangtze Basin, 2015, 24(5): 832-838] DOI: 10.11870/cjlyzyyhj201505016
[29] 秦丽欢,周敬祥,李叙勇,等. 密云水库上游径流变化趋势及影响因素[J]. 生态学报,2018, 38(6):1941-1951. [QIN Lihuan, ZHOU Jingxiang, LI Xuyong, et al. Attribution analysis of changes in runoff in the upstream of the Miyun Reservoir [J]. Acta Ecologica Sinica, 2018, 38(6): 1941-1951] DOI: 10.5846/stxb201609301980
[30] 朱颖洁. 北流河金鸡站水沙时间变化规律及预测研究[J]. 泥沙研究,2015(2):47-52. [ZHU Yingjie. Study on regulation and prediction of water and sediment of Jinji station in Beiliu River [J]. Journal of Sediment Research, 2015(2):47-52] DOI: 10.16239/j.cnki.0468-155x.2015.02.008
[31] 肖杨,周旭,蒋啸,等. 降水和人类活动对乌江上游径流变化的影响分析[J]. 水资源与水工程学报,2021, 32(3):91-98. [XIAO Yang, ZHOU Xu, JIANG Xiao, et al. Impact of precipitation and human activities on the change of runoff in the upper reaches of Wujiang River [J]. Journal of Water Resources and Water Engineering, 2021,32(3):91-98] DOI: 10.11705/j.issn.1672-643X.2021.3.13
[32] 胡光伟,毛德华,李正最,等. 60年来洞庭湖区进出湖径流特征分析[J]. 地理科学,2014, 34(1):89-96. [HU Guangwei, MAO Dehua, LI Zhengzui, et al. Analysis on the runoff characteristics in and out Dongting Lake in recent 60 years [J]. Scientia Geographica Sinica, 2014, 34(1): 89-96] DOI: 10.13249/j.cnki.sgs.2014.01.002
[33] 刘宇,管子隆,田济扬,等. 近70 a泾河流域径流变化及其驱动因素研究[J]. 干旱区地理,2022, 45(1):17-26. [LIU Yu, GUAN Zilong, TIAN Jiyang, et al. Runoff change and its driving factors in Jinghe River Basin in recent 70 years [J]. Arid Land Geography, 2022, 45(1): 17-26] DOI: 10.12118/j.issn.1000-6060.2021.212
[34] 刘晓琼,刘彦随,李同昇,等. 基于小波多尺度变换的渭河水沙演变规律研究[J]. 地理科学,2015, 35(2):211-217. [LIU Xiaoqiong, LIU Yansui, LI Tongsheng, et al. Evolution law of the runoff and sediment discharge of the Weihe River based on wavelet multi-scale transform [J]. Scientia Geographica Sinica, 2015, 35(2): 211-217] DOI: 10.13249/j.cnki.sgs.2015.02.012
[35] 赵阳,胡春宏,张晓明,等. 近70年黄河流域水沙情势及其成因分析[J]. 农业工程学报,2018, 34(21):112-119. [ZHAO Yang, HU Chunhong, ZHANG Xiaoming, et al. Analysis on runoff and sediment regimes and its causes of the Yellow River in recent 70 years [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(21):112-119] DOI: 10.11975/j.issn.1002-6819.2018.21.014
[36] 穆兴民,张秀勤,高鹏,等. 双累积曲线方法理论及在水文气象领域应用中应注意的问题[J]. 水文,2010, 30(4):47-51. [MU Xingmin, ZHANG Xiuqin, GAO Peng, et al. Theory of double mass curves and its applications in hydrology and meteorology [J]. Journal of China Hydrology, 2010, 30(4): 47-51]
[37] 程鹏,孔祥伟,罗汉,等. 近60 a以来祁连山中部气候变化及其径流响应研究[J]. 干旱区地理,2020, 43(5):1192-1201. [CHENG Peng, KONG Xiangwei, LUO Han, et al. Climate change and its runoff response in the middle section of the Qilian Mountains in the past 60 years [J]. Arid Land Geography, 2020, 43(5): 1192-1201] DOI: 10.12118/j.issn.1000-6060. 2020.05.04
[38] 陈青青,陈超群,杨志勇,等. 阿克苏河径流演变及其对气候变化的响应[J]. 水资源与水工程学报,2017, 28(1): 88-93+99. [CHEN Qingqing, CHEN Chaoqun, YANG Zhiyong, et al. Runoff variation in the Aksu River Basin and its response to climate change [J]. Journal of Water Resources and Water Engineering, 2017, 28(1): 88-93+99] DOI: 10.11705/j.issn.1672-643X.2017.01.15
[39] 居金浩,彭亮,那扎凯提·托乎提,等. 叶尔羌河流域水沙关系诊断与变异特征分析[J]. 人民黄河,2021, 43(6): 33-36+74. [JU Jinhao, PENG Liang, NAZHAKAITI Tohuti, et al. Diagnosis and analysis of variation characteristics of water and sediment relations in the Yarkand River Basin [J]. Yellow River, 2021, 43(6): 33-36+74] DOI: 10.3969/j.issn1000-1379.2021.06.007
[40] 张信宝,文安邦. 长江上游干流和支流河流泥沙近期变化及其原因[J]. 水利学报,2002, 33(4):56-59. [ZHANG Xinbao, WEN Anbang. Variations of sediment in upper stream of Yangtze River and its tributary [J]. Journal of Hydraulic Engineering, 2002, 33(4): 56-59] DOI: 10.13243/j.cnki.slxb.2002.04.011
[41] 杜俊,师长兴,张守红,等. 人类活动对长江上游近期输沙变化的影响[J]. 地理科学进展,2010, 29(1):15-22. [DU Jun, SHI Changxing, ZHANG Shouhong, et al. Impact of human activities on recent changes in sediment discharge of the Upper Yangtze River [J]. Progress in Geography, 2010, 29(1): 15-22] DOI: 10.11820/dlkxjz.2010.01.003
[42] 肖长伟,何军,向飞. 拉萨河水库调度模式对河流生态的影响及生态调度对策研究[J]. 水利发展研究,2013,13(7):14-19. [XIAO Changwei, HE Jun, XIANG Fei. The impacts of Lhasa River reservoir regulation mode on river ecology and the ecological regulation countermeasures [J]. Research on Hydraulic Development, 2013,13(7):14-19] DOI: 10.13928/j.cnki.wrdr.2013.07.003
[43] 金钊. 黄土高原小流域退耕还林还草的生态水文效应与可持续性[J]. 地球环境学报,2022,13(2):121-131. [JIN Zhao. Ecohydrological effects and sustainability of the Grain for Green Project on the Chinese Loess Plateau [J]. Journal of Earth Environment, 2022, 13(2):121-131] DOI: 10.7515/JEE221003
[44] 陈玫君,穆兴民,高鹏,等. 北洛河上游径流变化特征及其驱动因素研究[J]. 中国水土保持科学,2018, 16(6):1-8. [CHEN Meijun, MU Xingmin, GAO Peng, et al. Characteristics and driving factors of runoff changes in the upper reach of the Beiluo River Basin [J]. Science of Soil and Water Conservation, 2018, 16(6): 1-8] DOI: 10.16843/j.sswc.2018.06.001
[45] 宁珍,高光耀,傅伯杰. 黄土高原流域水沙变化研究进展[J]. 生态学报, 2020, 40(1):2-9. [NING Zhen, GAO Guangyao, FU Bojie.Changes in streamflow and sediment load in the catchments of the Loess Plateau, China: A review [J]. Acta Ecologica Sinica, 2020, 40(1): 2-9] DOI: 10.5846/stxb201909121903
[46] 吴贞晖,梅亚东,朱迪,等. 基于拓展敏感性方法和ABCD模型的流域枯季径流归因分析[J]. 长江流域资源与环境,2020, 29(6): 1366-1373. [WU Zhenhui, MEI Yadong, ZHU Di, et al. Dry season runoff attribution in basin based on extended hydrological sensitivity method and ABCD model[J]. Resources and Environment in the Yangtze Basin, 2020, 29(6): 1366-1373] DOI: 10.11870/cjlyzyyhj202006011

相似文献/References:

[1]时兴合,秦宁生,许维俊,等.1956~2004年长江源区河川径流量的变化特征[J].山地学报,2007,(05):513.
[2]李怡颖,范继辉*,廖 莹.近60年来嘉陵江流域水沙变化特征[J].山地学报,2020,(3):339.[doi:10.16089/j.cnki.1008-2786.000514]
 LI Yiying,FAN Jihui*,LIAO Ying.Variation Characteristics of Streamflow and Sediment in the Jialing River Basin in the Past 60 Years, China[J].Mountain Research,2020,(5):339.[doi:10.16089/j.cnki.1008-2786.000514]

备注/Memo

备注/Memo:
收稿日期(Received date): 2022-02-02; 改回日期(Accepted date): 2022-08-01
基金项目(Foundation item): 第二次青藏高原综合科学考察研究(2019QZKK040403); 中国科学院战略性先导科技专项(A类)(XDA20020401)。 [The Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK040403); Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20020401)]
作者简介(Biography): 张闻多(1997-),女,四川达州人,博士研究生,主要研究方向:土壤侵蚀与河流水文泥沙。[ZHANG Wenduo(1997-), female, born in Dazhou, Sichuan province, Ph.D candidate, research on soil erosion, river hydrology and sediment] E-mail: zhangwenduo@imde.ac.cn
*通讯作者(Corresponding author): 熊东红(1974-),男,博士,研究员,主要研究方向:土壤侵蚀与水土保持、山地水文与生态研究。[XIONG Donghong(1974-), male, Ph.D., professor, research on soil erosion and soil and water conservation, mountain hydrology and ecology] E-mail: dhxiong@imde.ac.cn
更新日期/Last Update: 2022-10-30