[1]王 文,马 超*,张 志,等.北京云蒙山片区“7·16”群发性暴雨泥石流特征研究[J].山地学报,2022,(4):626-636.[doi:10.16089/j.cnki.1008-2786.000698]
 WANG Wen,MA Chao*,ZHANG Zhi,et al.The Characteristics of Rainstorm-Induced Clustering Debris Flows on July 16, Yunmeng Mountain, Beijing, China[J].Mountain Research,2022,(4):626-636.[doi:10.16089/j.cnki.1008-2786.000698]
点击复制

北京云蒙山片区“7·16”群发性暴雨泥石流特征研究
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第4期
页码:
626-636
栏目:
研究简报
出版日期:
2022-09-15

文章信息/Info

Title:
The Characteristics of Rainstorm-Induced Clustering Debris Flows on July 16, Yunmeng Mountain, Beijing, China
文章编号:
1008-2786-(2022)4-626-11
作者:
王 文1马 超1*张 志2张 岩1路 璐3
1. 北京林业大学 水土保持学院,北京100083; 2. 应急管理部大数据中心,北京100013; 3. 北京市地质灾害防治研究所,北京100005
Author(s):
WANG Wen1 MA Chao1* ZHANG Zhi2 ZHANG Yan1 LU Lu3
1. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; 2. Ministry of Emergency Management Big Data Center, Beijing 100013, China; 3. Beijing Institute of Geological Hazard Prevention, Beijing 100005, China
关键词:
云蒙山 群发性泥石流 地貌特征 陡峭程度 起动条件
Keywords:
Yunmeng Mountain clustering debris flow geomorphic characteristics catchment steepness initiation condition
分类号:
P642.23
DOI:
10.16089/j.cnki.1008-2786.000698
文献标志码:
A
摘要:
地形特征和起动条件是区域泥石流预测预报和灾害防治的基础。2018年7月16日北京云蒙山片区暴雨引发多处泥石流,但目前尚未对该区域群发性泥石流特征展开研究。本文基于地面雨量站、高分遥感影像解译和数字高程模型,对群发性泥石流的雨量激发特征、地貌发育特征和起动条件开展研究。结果表明:(1)短历时、强降雨是激发此次泥石流的主要因素,平均降雨量221.9 mm。峰值时段降雨持续3~5 h,站点平均降雨强度为48.6 mm/h,降雨强度和降雨量远超区域历史水平。(2)泥石流流域面积、沟道纵比降、陡峭程度、沟壑密度、相对切割程度以及形态系数等地形特征,表明该区域的地形地貌条件有利于泥石流形成。流域陡峭程度集中在0.3~0.65,表明该区域泥石流过程存在与洪水交互出现的特点。(3)沟谷型和坡面型泥石流的汇水面积和起动坡度存在明显差异,汇水面积分界值为0.1 km2,起动坡度分界值为23°。沟谷型平均起动坡度为16°,坡面型主要在25°~50°的坡度上起动。泥石流的起动坡度随上游汇水面积增大而减小,起动临界地形阈值为1.54≤SA0.163≤5.91。该研究可为今后区域泥石流监测预警和灾害防治工程提供科学依据。
Abstract:
A proper understanding of the topographic and the initiation conditions can support the prediction and mitigation of debris flows. Debris flow is the most typical disasters in Beijing. On July 16, 2018, a heavy rainstorm triggered clustering debris flows in Yunmeng Mountain region and its nearby hilly regions, which posed a great threaten to the safety of life and property of local inhabitants. Unfortunately, the characteristics of clustering debris flows in this area have not been studied yet. This paper examined the triggering rainfall, topographic characteristics and the initiation conditions of clustering debris flows on basis of observed rainfall records, GF images and digital elevation model. The results show that:(1)Short-duration and heavy rainfall were the main factors triggering the debris flow, with an average rainfall of 221.9 mm. The intensified rainfall duration lasted about 3 to 5 hours and the mean rainfall intensity was 48.6mm/h. The rainfall intensity and accumulative rainfall broke the regional historical records.(2)The morphological features such as the drainage area, longitudinal gradient, catchment steepness, gully density, incision degrees and catchment shape together illustrated that the study area was prone to debris flows. Most of the catchment steepness was between 0.3 and 0.65, suggesting that the formation process may be between hyper-concentrated flow and debris flow in Beijing mountains.(3)There were obvious differences in the upslope contributing area and local slope of initiation sites between gully-type and slope-type debris flow. The discriminating contributing area and initiation slope of gully- and slope-type debris flow were 0.1 km2 and 23° respectively. In addition, the local initiation slope of gully-type was lower than that of slope-type. The average initiation slope of gully-type was 16° and that of slope-type was mainly concentrated in 25°~50°. Topographic threshold condition could be represented by the inverse relationship between local slope and contributing area, which was in form of 1.54≤SA0.163≤5.91. This study contributes to debris flow prediction and mitigation in the study area.

参考文献/References:

[1] 钟敦伦, 谢洪,王士革,等. 北京山区泥石流[M]. 北京: 商务印书馆, 2004. [ZHONG Dunlun, XIE Hong, WANG Shige, et al. Debris flow in the Beijing Mountain [M]. Beijing: The Commercial Press, 2004]
[2] 李金海,余新晓,谢宝元,等. 北京山洪泥石流[M]. 北京: 中国林业出版社, 2007. [LI Jinhai, YU Xinxiao, XIE Baoyuan, et al. Mountain torrents and debris flow in Beijing [M]. Beijing: China Forestry Publishing House, 2007]
[3] MA Chao, DENG Jiayong, WANG Rui. Analysis of the triggering conditions and erosion of a runoff-triggered debris flow in Miyun county, Beijing, China [J]. Landslides, 2018,15(12): 2475-2485. DOI: 10.1007/s10346-018-1080-3
[4] MA Chao, WANG Yujie, DU Cui, et al. Variation in initiation condition of debris flows in the mountain regions surrounding Beijing [J]. Geomorphology, 2016, 273:323-334. DOI: 10.1016/j.geomorph.2016.08.027
[5] LI Yaoming, MA Chao, WANG Yujie. Landslides and debris flows caused by an extreme rainstorm on 21 July 2012 in mountains near Beijing, China [J]. Bulletin of Engineering Geology and the Environment, 2019,78(2): 1265-1280. DOI: 10.1007/s10064-017-1187-0
[6] 孙永彬, 王诜, 高丽辉, 等. 北京延庆地区南湾道豁子沟泥石流发育特征[J]. 现代地质, 2021,35(3):753-762. [SUN Yongbin, WANG Shen, GAO Lihui, et al. Development characteristics of Huozigou debris flow at Nanwandao, Yanqing district, Beijing [J]. Geoscience, 2021,35(3):753-762] DOI: 10.19657/j.geoscience.1000-8527.2021.024
[7] 涂剑, 马超, 杨海龙. 北京山区暴雨泥石流激发雨量条件[J]. 中国水土保持科学, 2017,15(5):103-110. [TU Jian, MA Chao, YANG Hailong. Rainfall condition of triggering debris flows in Beijing mountain regions [J]. Science of Soil and Water Conservation, 2017,15(5):103-110] DOI: 10.16843/j.sswc.2017.05.013
[8] 廖立业, 曾庆利, 袁广祥. 北京怀柔7·16暴雨泥石流发育特征与形成机理[J]. 工程地质学报, 2021,29(3):807-816. [LIAO Liye, ZENG Qingli, YUAN Guangxiang. Characteristics and mechanism of the rainstorm-induced debris flow on July 16 in Huairou, Beijing [J]. Journal of Engineering Geology, 2021,29(3):807-816] DOI: 10.13544/j.cnki.jeg.2019-344
[9] 王礼先, 于志民. 山洪及泥石流灾害预报[M]. 北京: 中国林业出版社, 2001. [WANG Lixian, YU Zhimin. Flash flood and debris flow disaster forecast [M]. Beijing: China Forestry Publishing House, 2001]
[10] 韦京莲, 董桂芝, 赵波. 北京山区近代泥石流活动规律及暴发周期分析[J]. 中国地质灾害与防治学报, 1994,5(4):48-53. [WEI Jinglian, DONG Guizhi, ZHAO Bo. Relationship between activity periods of modern mud-rock flow and storm in the mountain areas of Beijing [J]. The Chinese Journal of Geological Hazard and Control, 1994,5(4):48-53] DOI: 10.16031/j.cnki.issn.1003-8035.1994.04.008
[11] 周伟, 唐川. 汶川震区暴雨泥石流发生的降雨阈值[J]. 水科学进展, 2013,24(6):786-793. [ZHOU Wei, TANG Chuan. Rainfall thresholds for debris flows occurrence in the Wenchuan earthquake area [J]. Advances in Water Science, 2013,24(6):786-793] DOI: 10.14042/j.cnki.32.1309.2013.06.013
[12] 北京市水利局. 北京市水文手册[M]. 北京:北京市水利局, 1999. [Beijing Water Affairs Bureau. Beijing hydrological handbook [M]. Beijing: Beijing Water Affairs Bureau,1999]
[13] 朱渊, 余斌, 亓星, 等. 地形条件对泥石流发育的影响: 以岷江流域上游为例[J]. 吉林大学学报(地球科学版), 2014,44(1):268-277. [ZHU Yuan, YU Bin, QI Xing, et al. Topographical factors in the formation of gully type debris flows in the upper reaches of Minjiang river [J]. Journal of Jilin University: Earth Science Edition, 2014,44(1):268-277] DOI: 10.13278/j.cnki.jjuese.201401204
[14] 谢洪, 钟敦伦, 韦方强, 等. 北京山区泥石流的分类与类型[J]. 山地学报, 2004,22(2):212-219. [XIE Hong, ZHONG Dunlun, WEI Fangqiang, et al. Classification of debris flow in the mountains of Beijing [J]. Mountain Research, 2004,22(2):212-219] DOI: 10.10689/j.cnki.1008-2786.2004.02.013
[15] 朱渊, 余斌, 陈源井, 等. 贵州望谟打蒿沟“6·06”泥石流特征[J]. 山地学报, 2012,30(5):599-606. [ZHU Yuan, YU Bin, CHEN Yuanjing, et al. The “6·06” disaster characteristics and forming mechanism of debris flow in Wangmo, Guizhou [J]. Mountain Research, 2012,30(5):599-606] DOI: 10.16089/j.cnki.1008-2786.2012.05.021
[16] 赵宾杰, 余斌, 常鸣, 等. 窄陡型泥石流沟特征研究[J]. 泥沙研究, 2021,46(5):61-67+40. [ZHAO Binjie, YU Bin, CHANG Ming, et al. Characteristics of debris flow in narrow-steep channel [J]. Journal of Sediment Research, 2021,46(5):61-67+40] DOI: 10.16239/j.cnki.0468-155x.2021.05.010
[17] 刘德玉, 贾贵义, 李松, 等. 地形因素对白龙江流域甘肃段泥石流灾害的影响及权重分析[J]. 水文地质工程地质, 2019,46(3):33-39. [LIU Deyu, JIA Guiyi, LI Song, et al. Impacts of topographical factors on debris flows and weight analysis at the Gansu segment of the Bailongjiang River Basin [J]. Hydrogeology and Engineering Geology, 2019,46(3):33-39] DOI: 10.16030/j.cnki.issn.1000-3665.2019.03.05
[18] MELTON M A. The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona [J]. The Journal of Geology, 1965,73(1):1-38. DOI: 10.1086/627044
[19] JACKSON L E, KOSTASCHUK R A, MACDONALD G M. Identification of debris flow hazard on alluvial fans in the Canadian Rocky Mountains [J]. Reviews in Engineering Geology, 1987,7:115-124. DOI: 10.1130/REG7-p115
[20] DE SCALLY F A, OWENS I F. Morphometric controls and geomorphic responses on fans in the Southern Alps, New Zealand [J]. Earth Surface Processes and Landforms, 2004,29(3): 311-322. DOI: 10.1002/esp.1022
[21] WILFORD D J, SAKALS M E, INNES J L, et al. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics [J]. Landslides, 2004,1(1): 61-66. DOI: 10.1007/s10346-003-0002-0
[22] WELSH A, DAVIES T. Identification of alluvial fans susceptible to debris-flow hazards [J]. Landslides, 2011,8(2): 183-194. DOI: 10.1007/s10346-010-0238-4
[23] ILINCA V. Using morphometrics to distinguish between debris flow, debris flood and flood(Southern Carpathians, Romania)[J]. Catena, 2021,197:104982. DOI: 10.1016/j.catena.2020.104982
[24] 常鸣, 唐川, 李为乐, 等. 汶川地震区绵远河流域泥石流形成区的崩塌滑坡特征[J]. 山地学报, 2012,30(5):561-569. [CHANG Ming, TANG Chuan, LI Weile, et al. The characteristic of collapse and landslide by Wenchuan Earthquake in debrisfFlow for mative region along the Mianyuan River basin,China [J]. Mountain Research, 2012,30(5):561-569] DOI: 10.16089/j.cnki.1008-2786.2012.05.017
[25] 李宁, 唐川, 卜祥航, 等. “5·12”地震后汶川县泥石流特征与演化分析[J]. 工程地质学报, 2020,28(6):1233-1245. [LI Ning, TANG Chuan, BU Xianghang, et al. Characteristics and evolution of debris flows in Wenchuan county after “5·12” earthquake [J]. Journal of Engineering Geology, 2020,28(6):1233-1245] DOI:10.13544/j.cnki.jeg.2019-310
[26] 冯茵, 杨武年, 张林, 等. 岷江上游地貌侵蚀对泥石流发育的影响[J]. 中国地质灾害与防治学报, 2013,24(2):16-20+25. [FENG Yin, YANG Wunian, ZHANG Lin, et al. Influence of geomorphology erosion on debris flow development on upperstream of Minjiang River [J]. The Chinese Journal of Geological Hazard and Control, 2013,24(2):16-20+25] DOI: 10.16031/j.cnki.issn.1003-8035.2013.02.002
[27] 熊俊楠, 刘志奇, 苏鹏程, 等. 基于GF-1卫星影像的金川县泥石流沟空间分布特征研究[J]. 自然灾害学报, 2019,28(2):160-168. [XIONG Junnan, LIU Zhiqi, SU Pengcheng, et al. Research on debris flow gully spatial distribution characteristics in Jinchuan county based on GF-1 satellite image [J]. Journal of Natural Disasters, 2019,28(2):160-168] DOI: 10.13577/j.jnd.2019.0218
[28] 余斌, 朱云波, 刘秧. 坡面泥石流降雨预报模型[J]. 水科学进展, 2017,28(6):839-848. [YU Bin, ZHU Yunbo, LIU Yang. Prediction model of hillslope debris flows [J]. Advances in Water Science, 2017,28(6):839-848] DOI:10.14042/j.cnki.32.1309.2017.06.005
[29] 王士革. 山坡型泥石流的危害与防治[J]. 中国地质灾害与防治学报, 1999,10(3):46-51. [WANG Shige. Hazard of debris flow on slope and its control [J]. The Chinese Journal of Geological Hazard and Control, 1999,10(3):46-51] DOI: 10.16031/j.cnki.issn.1003-8035.1999.03.007
[30] 李丽. 强震区群发性沟谷型泥石流地形因子研究[D]. 成都: 成都理工大学, 2012. [LI Li. The topographic factor study on the group of gully-type debris flow in strong earthquake [D]. Chengdu: Chengdu University of Technology, 2012]
[31] 余斌, 王涛, 朱渊. 浅层滑坡诱发沟谷泥石流的地形和降雨条件[J]. 水科学进展, 2016,27(4):542-550. [YU Bin, WANG Tao, ZHU Yuan. Research on the topographical and rainfall factors of debris flows caused by shallow landslides [J]. Advances in Water Science, 2016,27(4):542-550] DOI: 10.14042/j.cnki.32.1309.2016.04.008
[32] CANNON S H, KIRKHAM R M, PARISE M. Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado [J]. Geomorphology, 2001,39(3): 171-188. DOI: 10.1016/S0169-555X(00)00108-2
[33] GABET E J, BOOKTER A. A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA [J]. Geomorphology, 2007,96(3): 298-309. DOI: 10.1016/j.geomorph.2007.03.016
[34] PARK D W, LEE S R, VASU N N, et al. Coupled model for simulation of landslides and debris flows at local scale [J]. Natural Hazards, 2016,81(3): 1653-1682. DOI: 10.1007/s11069-016-2150-2
[35] KANG S H, LEE S R, VASU N N, et al. Development of an initiation criterion for debris flows based on local topographic properties and applicability assessment at a regional scale [J]. Engineering Geology, 2017,230: 64-76. DOI: 10.1016/j.enggeo.2017.09.017

备注/Memo

备注/Memo:
收稿日期(Received date):2022-07-11; 改回日期(Revised date):2022-08-23
基金项目(Foundation item):北京市科技计划课题(Z191100001419015); 国家自然科学基金(41702369)。[Beijing Municipal Science and Technology Project(Z191100001419015); National Natural Science Foundation of China(41702369)]
作者简介(Biography):王文(1999-),女,硕士研究生,主要研究方向:山地灾害预测预报。[WANG Wen(1999-), female, M.Sc. candidate, research on the mountain hazard prediction] E-mail:wangw1127@foxmail.com
*通讯作者(Corresponding author):马超(1986-),男,博士,副教授,博导,主要研究方向:山地灾害形成机理及动力学。[MA Chao(1986-), male, Ph.D., associate professor, research on the mechanics and dynamic properties of mountain hazards] E-mail:sanguoxumei@163.com
更新日期/Last Update: 2022-08-30