[1]童珊ab,曹广超b*,闫 欣ab,等.祁连山南坡2000—2020年植被覆盖时空演变及其驱动因素分析[J].山地学报,2022,(4):491-503.[doi:10.16089/j.cnki.1008-2786.000688]
 TONG Shanab,CAO Guangchaob*,YAN Xinab,et al.Spatial-Temporal Evolution of Vegetation Cover and its Driving Factors on the South Slope of the Qilian Mountains, China from 2000 to 2020[J].Mountain Research,2022,(4):491-503.[doi:10.16089/j.cnki.1008-2786.000688]
点击复制

祁连山南坡2000—2020年植被覆盖时空演变及其驱动因素分析
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第4期
页码:
491-503
栏目:
山地环境
出版日期:
2022-09-15

文章信息/Info

Title:
Spatial-Temporal Evolution of Vegetation Cover and its Driving Factors on the South Slope of the Qilian Mountains, China from 2000 to 2020
文章编号:
1008-2786-(2022)4-491-13
作者:
童珊1a1b2曹广超1b2* 闫 欣1a1b2刁二龙1a1b2张 卓1a1b2
1.青海师范大学 a.地理科学学院; b.青海省自然地理与环境过程重点实验室,西宁 810008; 2.青藏高原地表过程与生态保育教育部重点实验室,西宁 810008
Author(s):
TONG Shan1a1b2 CAO Guangchao1b2* YAN Xin1a1b2 DIAO Erlong1a1b2 ZHANG Zhuo1a1b2
1. a. College of Geographical Sciences; b. Qinghai Key Laboratory of Natural Geographyand Environmental Process, Qinghai Normal University: Xining 810008, China; 2.Key Laboratory of Earth Surface Processes and Ecological Conservation of the Ministry of Education, Qinghai-Tibet Plateau, Xining 810008, China
关键词:
植被覆盖 时空变化 迁移特征 地理探测 祁连山
Keywords:
vegetation cover temporal and spatial variation migration characteristics geographic exploration the Qilian Mountains
分类号:
P931.5
DOI:
10.16089/j.cnki.1008-2786.000688
文献标志码:
A
摘要:
植被在生态系统中具有不可替代的作用,深入探讨植被覆盖的空间变化及影响因素对研究区的生态保护及政策落实具有重要意义。植被覆盖变化是多因素综合作用的结果,而前人研究主要集中于气候变化或地形变化等单一因素对植被的影响研究,缺乏对气候条件、地形变化及人口特征等多因素对植被综合作用影响的研究,不利于对植被覆盖变化主要驱动因素的客观判断。为深入了解祁连山NDVI的变化规律及驱动机制,本文以祁连山南坡这一典型区域为例,基于2000—2020年NDVI数据及气象、土壤、植被、地貌、地形、人口等要素,运用重心迁移模型及地理探测器模型对研究区植被时空变化特征及影响因素进行分析。结果表明:(1)祁连山南坡近20年植被覆盖呈逐渐变好趋势;(2)在不同土地利用类型中,未利用土地植被覆盖重心迁移距离最大,为319.77 m,迁移速率为15.23 m/a; 其次,草地植被覆盖重心迁移距离为116.12 m,迁移速率为5.23 m/a,林地与耕地植被重心迁移距离最小,分别为4.66 m与1.30 m,迁移速率分别为0.22 m/a与0.66 m/a;(3)通过地理探测器分析,影响祁连山南坡植被覆盖最主要的因素为年均温、DEM、土壤类型及植被类型,评价指标交互组合表现出6.67%的独立现象、35.56%的双因子增强的现象、57.77%的非线性增强的现象;(4)祁连山南坡植被生长最适宜范围为平均温度为0.6 ℃~2 ℃、相对湿度为43.91%~48.74%、坡度为0°~7.27°、降雨为204.03~335.97 mm、人口密度为133.98~204.03人/km2、土壤类型为棕黑毡土、植被类型为高寒禾草、苔草草原、地貌为中起伏低山、DEM为3005~3263 m及坡向为北坡时。本研究有助于深入了解干旱半干旱区植被生长与植被恢复情况,并为生态工程及修复工程的实施提供一定理论依据。
Abstract:
Vegetation plays an irreplaceable role as environment indicator in ecosystem. The change of vegetation coveris is a result of combined effect of multiple factors. In-depth discussion on vegetation coverage in an ecosystem-concerned area regarding to their spatial changes or associated influencing factors is of great significance for ecological protection and policy-making. Past studies mainly aimed to the influence of a single factor on vegetation, such as climate change or topographic modification, but they ignored the influences of non-climatic factors, including population density on vegetation, and also lacked proper comments on the comprehensive effects of climate, topographic features, and population on vegetation change, therefore making the past findings in vegetation coverage less applicable as expected.
In order to deeply understand the change law and driving mechanism of NDVI in the Qilian Mountains, taking the typical area on the south slope of the Qilian Mountains as an example, this paper analyzed the temporal and spatial change characteristics and influencing factors of vegetation by center of gravity migration model and geographical detector model based on NDVI data from 2000 to 2020 and other factors such as meteorology, soil, vegetation, landform, topography and population. The results show that:(1)The vegetation coverage on the southern slope of the Qilian Mountains has gradually improved in recent 20 years;(2)Among different land use types, the distance of gravity center of vegetation cover in unused land was the largest, which was 319.77 m, and the migration rate was 15.23 m/a; Secondly, the migration distance of barycenter of vegetation cover in grassland was 116.12 m, and the migration rate was 5.23 m/a, while the migration distance of barycenter of forest land and cultivated land was the smallest, which was 4.66 m and 1.30 m, and the migration rate was 0.22 m/a and 0.66 m/a, respectively;(3)According to the analysis of geographical detectors, the main factors affecting vegetation coverage on the southern slope of the Qilian Mountains were average annual temperature, DEM, soil type and vegetation type. The interactive combination of evaluation indexes showed 6.67% independent phenomenon, 35.56% double factor enhancement phenomenon and 57.77% nonlinear enhancement phenomenon;(4)The most suitable range of vegetation growth on the south slope of the Qilian Mountains was the average temperature of 0.6 ℃~2 ℃, relative humidity of 43.91%~48.74%, slope of 0~7.27, rainfall of 204.03~335.97 mm, population density of 133.98~204.03 persons per kilometers, soil type of brown-black felt soil, vegetation type of alpine grass and Carex grassland, landform of middle undulating low mountain, DEM of 3005~3263 m and slope aspect of north slope. This study is helpful to understand the vegetation growth and vegetation restoration in arid and semi-arid areas, and provides a theoretical basis for the implementation of ecological engineering and restoration engineering.

参考文献/References:

[1] GONG Zhaoning, ZHAO Shuyi, GU Jinzhi. Correlation analysis between vegetation coverage and climate drought conditions in north China during 2001-2013 [J]. Journal of Geographical Sciences, 2017, 27(2); 143-160. DOI: 10.1007/s11442-017-1369-5
[2] PENG Wenfu, KUANG Tingting, TAO Shuai. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, westem China [J]. Journal of Cleaner Production, 2019, 233: 353-367. DOI: 10.1016/j.jclepro.2019.05.355
[3] 孙红雨, 王长耀, 牛铮, 等. 中国地表植被覆盖变化及其与气候因子关系—基于 NOAA 时间序列数据分析[J]. 遥感学报, 1998,2(3): 3-5. [SUN Hongyu, WANG Changyao, NIU Zheng, et al. Analysis of the vegetation cover change and the relationship between NDVI and environmental factors by using NOAA time series data [J]. Journal of Remote Sensing, 1998,2(3): 3-5]
[4] 穆少杰, 李建龙, 陈奕兆, 等. 2001—2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012, 67(9):1255-1268. [MU Shaojie, LI Jianlong, CHEN Yizhao, et al. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001-2010 [J]. Acta Geographica Sinica, 2012, 67(9): 1255-1268]
[5] 肖云飞, 陈文业, 王斌杰, 等. 祁连山国家级自然保护区土地利用时空变化及与气候因子关系研究[J]. 草地学报, 2021, 29(9):2049-2057. [XIAO Yunfei, CHEN Wenye, WANG Binjie, et al. Study on temporal and spatial change of land use and its relationship with climate factors in Qilian Mountain National Nature Reserve [J]. Acta Agrestia Sinica, 2021, 29(9):2049-2057] DOI: 10.11733/j.issn.1007-0435.2021.09.023
[6] 刘佳茹, 赵军, 王建邦. 2001—2016年祁连山地区植被覆盖度对干旱的响应[J]. 草业科学, 2021, 38(3):419-431. [LIU Jiaru, ZHAO Jun, WANG Jianbang. Response of vegetation coverage to drought in the Qilian Mountains region from 2001 to 2016 [J]. Pratacultural Science, 2021, 38(3):419-431] DOI: 10.11829/j.issn.1001-0629.2020-0318
[7] 张蓉, 潘竟虎, 李娜. 泛祁连山地区植被动态变化及其对水热条件的响应[J]. 兰州大学学报(自然科学版), 2020, 56(6):740-748. [ZHANG Rong, PAN Jinghu, LI Na. Vegetation dynamic changes and their responses to hydrothermal conditions in the Pan-Qilian Mountains [J]. Journal of Lanzhou University(Natural Sciences), 2020, 56(6):740-748] DOI: 10.13885/j.issn.0455-2059. 2020.06.005
[8] 童珊, 曹广超, 曹生奎. 近34年祁连山南坡植被覆盖变化与气象因子关系研究[J]. 长江流域资源与环境, 2020, 29(12):2655-2664. [TONG Shan, CAO Guangchao, CAO Shengkui. Study on the relationship between vegetation cover changes and meteorological factors on the southern slope of Qilian Mountains in the past 34 years [J]. Resources and Environment in the Yangtze Basin, 2020, 29(12):2655-2664] DOI: 10. 11870/cjlyzyyhj202012009
[9] 白云. 祁连山不同植被类型覆盖下冻土水热特征变化研究[D]. 兰州:甘肃农业大学, 2020. [BAI Yun. Study on variations of the hydro-thermal characteristics of frozen under different vegetation types in Qilian Mountain [D]. Lanzhou: Gansu Agricultural University, 2020]
[10] 袁杰, 曹广超, 杨登兴, 等. 祁连山黑河源区植被NDVI时空变化特征及影响因素分析[J].生态科学, 2021, 40(5):172-182. [YUAN Jie, CAO Guangchao, YANG Dengxing, et al. Temporal and spatial variation characteristics and influencing factors of vegetation NDVI in Heihe source region of Qilian Mountains [J]. Ecological Science, 2021, 40(5):172-182] DOI: 10.14108/j.cnki.1008-8873.2021.05.022
[11] 李娟, 龚纯伟. 祁连山国家公园植被覆盖变化地形分异效应[J]. 水土保持通报, 2021, 41(3):228-237. [LI Juan, GONG Chunwei. Effects of terrain factors on vegetation cover change in National Park of Qilian Mountains [J]. Bulletin of Soil and Water Conservation, 2021, 41(3):228-237] DOI: 10.13961/j.cnki.stbctb.2021.03.031
[12] 邱丽莎, 何毅, 张立峰, 等. 祁连山MODIS LST时空变化特征及影响因素分析[J]. 干旱区地理, 2020, 43(3):726-737. [QIU Lisha, HE Yi, ZHANG Lifeng, et al. Spatiotemporal variation characteristics and influence factors of MODIS LST in Qilian Mountains [J]. Arid Land Geography, 2020, 43(3):726-737] DOI: 10.12118/j.issn.1000-6060.2020.03.19
[13] 付建新, 曹广超, 郭文炯. 1998—2017年祁连山南坡不同海拔、坡度和坡向生长季NDVI变化及其与气象因子的关系[J]. 应用生态学报, 2020, 31(4):1203-1212. [FU Jianxin, CAO Guangchao, GUO Wenjiong. Changes of growing season NDVI at different elevations, slopes and slope aspects and its relationship with meteorological factors in the southern slope of Qilian Mountains, China from 1998 to 2017 [J]. Chinese Journal of Applied Ecology, 2020, 31(4):1203-1212] DOI: 10.13287/j.1001-9332.202004.018
[14] 杨荣荣, 曹广超, 曹生奎, 等. 祁连山南坡主要河谷NDVI时空变化及影响因素分析[J].广西植物, 2021, 41(3):429-437. [YANG Rongrong, CAO Guangchao, CAO Shengkui, et al. Temporal and spatial variations of NDVI and analysis of influencing factors in main valleys of southern slope of Qilian Mountains [J]. Guihaia, 2021, 41(3):429-437] DOI: 10.11931/guihaia.gxzw201907036
[15] 马昊翔, 陈长成, 宋英强, 等. 青海省近10年草地植被覆盖动态变化及其驱动因素分析[J]. 水土保持研究, 2018, 25(6): 137-145. [MA Haoxiang, CHEN Changcheng, SONG Yingqiang, et al. Analysis of vegetation cover change and its driving factors over the past ten years in Qinghai province [J]. Research of Soil and Water Conservation, 2018, 25(6): 137-145] DOI: 10.13869/j.cnki.rswc.2018.06.021
[16] 刘雪梅, 高小红, 马元仓. 2002—2015年青海省不同气候区植被覆盖时空变化[J]. 干旱区研究, 2017, 34(6):1345-1352. [LIU Xuemei, GAO Xiaohong, MA Yuancang. Spatio-temporal evolution of vegetation coverage in Qinghai province, China during the periods from 2002 to 2015 [J]. Arid Zone Research, 2017, 34(6):1345-1352] DOI: 10.13866/j.azr.2017.06.17
[17] 丁国民, 裴雯, 张天斌, 等. 甘肃祁连山哈溪林区植被覆盖度变化监测研究[J]. 林业调查规划, 2015, 40(5):31-35. [DING Guomin, PEI Wen, ZHANG Tianbin, et al. Vegetation coverage monitoring in Gansu Qilian Haxi forest region [J]. Forest Inventory and Planning, 2015, 40(5):31-35] DOI: 10.3969/j.issn.1671-3168.2015.05.007
[18] 武正丽, 贾文雄, 刘亚荣, 等. 近10a来祁连山植被覆盖变化研究[J]. 干旱区研究, 2014, 31(1):80-87. [WU Zhengli, JIA Wenxiong, LIU Yarong, et al. Change of vegetation coverage in Qilian Mountains in recent 10 years [J]. Arid Zone Research, 2014, 31(1):80-87] DOI: 10.13866/j.azr.2014.01.023
[19] 李芳, 蒋志荣. 张掖地区植被覆盖变化及其预测研究[J]. 水土保持通报, 2011, 31(5):220-224. [LI Fang, JIANG Zhirong. Dynamic analysis of vegetation cover and prediction in Zhangye region [J]. Bulletin of Soil and Water Conservation, 2011, 31(5):220-224] DOI: 10.13961/j.cnki.stbctb.2011.05.006
[20] SU Yiting, WANG Dongchuan, ZHAO Shuang, et al. Examining long-term natural vegetation dynamics in the Aral Sea Basin applying the linear spectral mixture model [J]. PeerJ, 2021, 9(6):e10747. DOI: 10.7717/peerj.10747
[21] GU Zhijia, DUAN Xingwu, SHI Yandong, et al. Spatiotemporal variation in vegetation coverage and its response to climatic factors in the Red River Basin, China [J]. Ecological Indicators, 2018, 93:54-64. DOI: 10.1016/j.ecolind.2018.04.033
[22] DUAN Hanchen, QI Yuan, KANG Wenping, et al. Seasonal variation of vegetation and its spatiotemporal response to climatic factors in the Qilian Mountains, China [J]. Sustainability, 2022, 14:4926. DOI: 10.3390/su14094926
[23] JIAO Youquan, FENG Ji. Study on SDE distribution of forest vegetation in China based on trapezoidal grid segmentation [J]. IOP Conference Series: Earth and Environmental Science, 2021, 658:012054. DOI: 10.1088/1755-1315/658/1/012054
[24] LI Jie, WANG Jinliang, ZHANG Jun, et al. Growing-season vegetation coverage patterns and driving factors in the China-Myanmar Economic Corridor based on Google Earth Engine and geographic detector [J]. Ecological Indicators, 2022, 136:108620. DOI: 10.1016/J.ECOLIND.2022.108620
[25] 舒骏生, 蔡奕, 罗标. 基于NDVI的湖南省国家级公益林2004—2018年时空变化研究[J].中南林业调查规划, 2020, 39(3):25-30. [SHU Junsheng,CAI Yi,LUO Biao. Spatio-temporal variation study of 2004 to 2018 on National Non-Nommercial Forest in Hunan province based on NDVI [J]. Central South Forest Inventory and Planning, 2020, 39(3), 25-30]DOI: 10.16166/j.cnki.cn43-1095.2020.03.007
[26] 张强, 杜志成. 丝绸之路经济带上区域生态安全评价研究:以祁连山冰川与水源涵养生态功能区为例[J]. 生态经济, 2016, 32(10):169-173. [ZHANG Qiang, DU Zhicheng. Evaluation research on regional ecological security of Silk Road Economic Belt: A case study of Qilian Mountains and water conservation ecological function district province [J]. Ecological Economy, 2016, 32(10): 169-173]
[27] 虞敏, 曹广超, 曹生奎, 等. 近30年祁连山南坡降水量变化特征分析[J]. 水土保持研究, 2019, 26(2):241-248. [YU Min, CAO Guangchao, CAO Shengkui, et al. Analysis of precipitation variation characteristics on the southern slope of Qilianshan Mountains in recent 30 years [J]. Research of Soil and Water Conservation, 2019, 26(2): 241-248] DOI: 10.13869/j.cnki.rswc.2019.02.035
[28] 戴声佩, 张勃. 基于 GIS 的祁连山植被 NDVI 对气温降水的旬响应分析[J]. 生态环境学报, 2010, 19(1):140-145. [DAI Shengpei, ZHANG Bo. Ten-day response of vegetation NDVI to the variations of temperature and precipitation in Qilian Mountains based on GIS [J]. Ecology and Environmental Sciences, 2010, 19(1): 140-145] DOI: 10.16258/j.cnki.1674-5906.2010.01.024
[29] 魏兰香. 基于USLE模型的祁连山南坡土壤保持量评估[D]. 西宁:青海师范大学, 2017. [WEI Lanxiang. Evaluation of soil conservation quantity of the southern slope of Qilian Mountains based on USLE Model [D]. Xining: Qinghai Normal University, 2017]
[30] 杨荣荣, 曹广超, 曹生奎, 等. 祁连山南坡表层土壤有机质含量反演[J]. 生态科学, 2020, 39(5):57-63. [YANG Rongrong, CAO Guangchao, CAO Shengkui, et al. The surface soil organic matter content inversion on the south slope of Qilian Mountain [J]. Ecological Science, 2020, 39(5): 57-63] DOI: 10.14108/j.cnki.1008-8873.2020.05.007
[31] 陈炜林. 基于空间计量模型的重庆主城人口重心迁移驱动影响因素研究[D]. 重庆:重庆大学, 2019. [CHEN Wenlin. Research on the factors affecting the migration of gravity center of Chongqing main city based on spatial econometric model [D]. Chongqing: Chongqing University, 2019]
[32] 董弟文, 阿布都热合曼·哈力克, 王大伟, 等. 1994—2016年和田绿洲植被覆盖时空变化分析[J]. 生态学报, 2019, 39(10):3710-3719. [DONG Diwen, ABDURIHMAN Halike, WANG Dawei, et al. Spatio-temporal variations in vegetation cover in Hotan Oasis from 1994 to 2016 [J]. Acta Ecologica Sinica, 2019, 39(10): 3710-3719] DOI: 10.5846/stxb201805281167
[33] 范俊甫, 何惠馨, 郭兵. 1980—2015年黄河流域降雨侵蚀力时空变化分析[J]. 地球信息科学学报, 2018, 20(2):196-204. [FAN Junfu, HE Huixin, GUO Bing. Temporal and spatial variations of rainfall erosivity in the Yellow River from 1980 to 2015 [J]. Journal of Geo-information Science, 2018, 20(2): 196-204] DOI: 10.12082/dqxxkx.2018.170411
[34] 吴炳伦, 孙华, 石军南, 等. 2000—2018年深圳市植被覆盖动态变化与预测[J]. 应用生态学报, 2020, 31(11):3777-3785. [WU Binglun, SUN Hua, SHI Junnan, et al. Dynamic change and prediction of vegetation cover in Shenzhen, China from 2000 to 2018 [J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3777-3785] DOI: 10.13287/j.1001-9332.202011.012
[35] 赵珍珍, 冯建迪. 1980—2016年科尔沁沙地土地利用重心的时空迁移特征[J]. 水土保持通报, 2019, 39(4):256-260. [ZHAO Zhaozhen, FENG Jiandi. Spatial-temporal evolution features of land use gravity center in Horqin sandy land during 1980-2016 [J]. Bulletin of Soil and Water Conservation, 2019, 39(4): 256-260] DOI: 10.13961/j.cnki.stbctb.2019.04.040
[36] 肖智, 黄贤金, 孟浩, 等. 2009—2014 年中国茶叶生产空间演变格局及变化特征[J]. 地理研究, 2017, 36(1): 109-120. [XIAO Zhi, HUANG Xianjin, MENG Hao, et al. Spatial stucture and evolution of tea production in China from 2009 to 2014 [J]. Geographical Research, 2017, 36(1): 109-120] DOI: 10.11821/dlyj201701009
[37] 黄娉婷, 张晓平. 大都市区工业重心时空变动轨迹分析: 以天津市为例[J]. 经济地理, 2012, 32(3): 89-95. [HUANG Pingting, ZHANG Xiaoping. Analysis of temporal and spatial movement of the gravity center of city industry: A case study of Tianjin [J]. Economic Geography, 2012, 32(3): 89-95] DOI: 10.15957/j.cnki.jjdl.2012.03.029
[38] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报. 2017, 72(1): 116-134. [WANG Jinfeng, XU Chengdong. Geodetector: Principle and prospective [J]. Acta Geographica Sinica. 2017, 72(1): 116-134] DOI: 10.11821/dlxb201701010
[39] WANG Jinfeng, LI Xinhu, CHRISTAKOS George, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China [J]. International Journal of Geographical Information Science, 2010, 24(1): 107-127. DOI: 10.1080/13658810802443457
[40] 邢晓露, 郭岚, 杨梅焕, 等. 半干旱生态脆弱区生态服务价值时空演变及地理探测机制[J]. 西安理工大学学报, 2021,37(4):526-535. [XING Xiaolu, GUO Lan, YANG Meihuan, et al. Temporal and spatial evolution of ecological service value and geographical exploration mechanism in the ecology fragile area of semi-arid [J]. Journal of Xi'an University of Technology, 2021,37(4):526-535] DOI: 10.19322/j.cnki.issn.1006-4710.2021.04.009
[41] 李梦华, 韩颖娟, 赵慧,等. 基于地理探测器的宁夏植被覆盖度时空变化特征及其驱动因子分析[J]. 生态环境学报,2022,31(7):1317-1325. [LI Menghua, HAN Yingjuan, ZHAO Hui, et al.Analysis on spatial-temporal variation characteristics and driving factors of fractional vegetation cover in Ningxia based on geographical detector [J]. Ecology and Environmental Sciences, 2022,31(7): 1317-1325] DOI: 10.16258/j.cnki.1674-5906.2022.07.004
[42] 丁倩, 张弛. 基于地理探测器的中国陆地生态系统土壤有机碳空间异质性影响因子分析[J]. 生态环境学报, 2021, 30(1):19-28. [DING Qian, ZHANG Chi. Influential factors analysis for spatial heterogeneity of soil organic carbon in Chinese terrestrial ecosystems with geographical detector [J]. Ecology and Environmental Sciences,, 2021, 30(1): 19-28] DOI: 10.16258/j.cnki.1674-5906.2021.01.003
[43] 孟琪, 武志涛, 杜自强, 等. 基于地理探测器的区域植被覆盖度的定量影响—以京津风沙源区为例[J]. 中国环境科学, 2021, 41(2):826-836. [MENG Qi, WU Zhitao, DU Ziqiang, et al. Quantitative influence of regional fractional vegetation cover based on geodetector model: Take the Beijing-Tianjin sand source region as an example [J]. China Environmental Science, 2021, 41(2): 826-836] DOI: 10.19674/j.cnki.issn1000-6923.2021.0094
[44] 张华, 李明, 宋金岳, 等. 基于地理探测器的祁连山国家公园植被NDVI变化驱动因素分析[J]. 生态学杂志, 2021,40(8):2530-2540. [ZHANG Hua, LI Ming, SONG Jinyue, et al. Analysis of driving factors of vegetation NDVI change in Qilian Mountain National Park based on geographic detector [J]. Chinese Journal of Ecology, 2021,40(8):2530-2540] DOI: 10.13292/j.1000-4890.202108.022
[45] SUN Jian, CHENG Genwei, LI Weipeng, et al. On the variation of NDVI with the principal climatic elements in the Tibetan Plateau [J]. Remote Sensing. 2013,5(4):1894-1911. DOI: 10.3390/rs5041894
[46] 陈宽, 杨晨晨, 白力嘎, 等. 基于地理探测器的内蒙古自然和人为因素对植被NDVI变化的影响[J]. 生态学报, 2021, 41(12):4963-4975. [CHEN Kuan, YANG Chenchen, BAI Liga, et al. Effects of natural and human factors on vegetation NDVI based on geographical detectors in Inner Mongolia [J]. Acta Ecologica Sinica, 2021,41(12):4963-4975] DOI: 10.5846/stxb202004180928
[47] 彭文甫, 张冬梅, 罗艳玫, 等. 自然因子对四川植被 NDVI 变化的地理探测[J]. 地理学报, 2019, 74(9):1758-1776. [PENG Wenfu, ZHANG Dongmei, LUO Yanmei, et al. Influence of natural factors on vegetation NDVI using geographical detection in Sichuan province [J]. Acta Geographica Sinica, 2019, 74(9): 1758-1776] DOI: 10.11821/dlxb201909005
[48] 陶帅, 邝婷婷, 彭文甫, 等. 2000—2015年长江上游NDVI时空变化及驱动力—以宜宾市为例[J]. 生态学报, 2020, 40(14):5029-5043. [TAO Shuai, KUANG Tingting, PENG Wenfu, et al. Analyzing the spatio-temporal variation and drivers of NDVI in upper reaches of the Yangtze River from 2000 to 2015: A case study of Yibin city [J]. Acta Ecologica Sinica, 2020, 40(14): 5029-5043] DOI: 10.5846/stxb201904190790
[49] 方桥, 胡广录, 张克海, 等. 荒漠—绿洲过渡带固沙植被土壤剖面水分特征[J]. 兰州交通大学学报, 2020, 39(3):118-124. [FANG Qiao, HU Guanglu, ZHANG Kehai, et al. Soil profile moisture characteristics of sand fixing vegetation in desert-oasis ecotone [J]. Journal of Lanzhou Jiaotong University, 2020,39(3):118-124] DOI: 10.3969/j.issn.1001-4373.2020.03.018
[50] 唐见, 曹慧群, 陈进. 生态保护工程和气候变化对长江源区植被变化的影响量化[J]. 地理学报, 2019,74(1):76-86. [TANG Jian, CAO Huiqun, CHEN Jin. Effects of ecological conservation projects and climate change variations on vegetation changes in the source region of the Yangtze River [J]. Acta Geographica Sinica, 2019,74(1):76-86] DOI: 10.11821/dlxb201901006
[51] 史丹丹, 杨涛, 胡金明, 等. 基于 NDVI 的黄河源区生长季植被时空变化及其与气候因子的关系[J]. 山地学报, 2018, 36(2):184-193. [SHI Dandan, YANG Tao, HU Jinming, et al. Spatio-temporal variation of NDVI-based vegetation during the growing-season and its relation with climatic factors in the Yellow River source region [J]. Mountain Research, 2018, 36(2): 184-193] DOI: 10.16089/j.cnki.1008-2786.000314
[52] LEVINE Jonathan M. A trail map for trait-based studies [J]. Nature, 2016, 529(7585): 163-164. DOI: 10.1038/nature16862
[53] BARNETT T P, ADAM J C, LETTENMAIER D P. Potential impacts of a warming climate on water availability in snow-dominated regions [J]. Nature, 2005, 438(7066):303-309. DOI: 10.1038/nature04141
[54] 田义超, 梁铭忠. 北部湾沿海地区植被覆盖对气温和降水的旬响应特征[J]. 自然资源学报, 2016, 31(3):488-502. [TIAN Yichao, LIANG Mingzhong. The NDVI characteristics of vegetation and its ten-day response to temperature and precipitation in Beibu Gulf coastal region [J]. Journal of Natural Resources, 2016, 31(3): 488-502] DOI: 10.11849/zrzyxb.20150188
[55] 童珊, 曹广超, 陈真, 等. 近30年祁连山南坡生长季植被降水利用效率时空变化[J]. 生态科学, 2020, 39(5):124-133. [TONG Shan, CAO Guangchao, CHEN Zhen, et al. Temporal and spatial variation of vegetation precipitation and utilization efficiency in the growing season of the southern slope of Qilian Mountains in the past recent 30 years [J]. Ecological Science, 2020, 39(5): 124-133] DOI: 10.14108/j.cnki.1008-8873.2020.05.015
[56] 任立清, 董国涛, 谷佳贺, 等. 黑河上游植被时空分布及驱动力分析[J]. 水土保持研究, 2021, 28(4):244-250. [REN Liqing, DONG Guotao, GU Jiahe, et al. Spatiotemporal distribution and driving force analysis of vegetation in the upper reaches of Heihe River [J]. Research of Soil and Water Conservation, 2021,28(4):244-250] DOI: 10.13869/j.cnki.rswc.2021.04.028

相似文献/References:

[1]范建容,刘飞,郭芬芬,等.基于遥感技术的三峡库区土壤侵蚀量评估及影响因子分析[J].山地学报,2011,(03):306.
 FAN Jianrong,LIU Fei,GUO Fenfen,et al.Soil Erosion Assessment and Cause Analysis in Three Gorges Reservoir Area Based on Remote Sensing[J].Mountain Research,2011,(4):306.
[2]许海超,李子君,林锦阔,等.燕山土石山区降雨和下垫面条件对坡面侵蚀产沙的影响[J].山地学报,2016,(01):46.[doi:10.16089/j.cnki.1008-2786.000099]
 XU Haichao,LI Zijun,LIN Jinkuo,et al.Influences of Rainfall and Underlying Surface Conditions on Soil Erosion and Sediment Yield in Yanshan Rocky Mountain Area[J].Mountain Research,2016,(4):46.[doi:10.16089/j.cnki.1008-2786.000099]
[3]唐志光,王 建,王 欣,等.基于MODIS数据的青藏高原积雪日数提取与时空变化分析[J].山地学报,2017,(03):412.[doi:10.16089/j.cnki.1008-2786.000237]
 TANG Zhiguang,WANG Jian,WANG Xin,et al.Extraction and Spatiotemporal Analysis of Snow Covered Days over Tibetan Plateau Based on MODIS Data[J].Mountain Research,2017,(4):412.[doi:10.16089/j.cnki.1008-2786.000237]
[4]林志东,陈兴伟,林木生,等.东南沿海西溪流域暴雨洪水的时空变化特征[J].山地学报,2017,(04):488.[doi:10.16089/j.cnki.1008-2786.000246]
 LIN Zhidong,CHEN Xingwei*,LIN Musheng,et al.Spatial and temporal Variations of Storm-floods in Xixi Watershed of Southeast Coastal Region[J].Mountain Research,2017,(4):488.[doi:10.16089/j.cnki.1008-2786.000246]
[5]刘泽彬,王彦辉*,徐丽宏,等.六盘山华北落叶松林坡面土壤含水量的时空变化[J].山地学报,2018,(01):43.[doi:10.16089/j.cnki.1008-2786.000299]
 LIU Zebin,WANG Yanhui*,XU Lihong,et al.Spatial-temporal Variations and Scale Effect ofSoil Moisture on Larix Principis-ruprechtii Plantation Slopein Semihumid Liupan Mountains, China[J].Mountain Research,2018,(4):43.[doi:10.16089/j.cnki.1008-2786.000299]
[6]史丹丹,杨 涛,胡金明*,等.基于NDVI的黄河源区生长季植被时空变化及其与气候因子的关系[J].山地学报,2018,(02):184.[doi:10.16089/j.cnki.1008-2786.000314]
 SHI Dandan,YANG Tao,HU Jinming*,et al.Spatio-temporal variation of NDVI-based wegetation during the growing-season and its relation with climatic factors inthe Yellow River Source Region[J].Mountain Research,2018,(4):184.[doi:10.16089/j.cnki.1008-2786.000314]
[7]管亚兵,杨胜天*,赵长森,等.2000年以来岷江上游地区MODIS/NDVI动态变化[J].山地学报,2018,(03):345.[doi:10.16089/j.cnki.1008-2786.000330]
 GUAN Yabing,YANG Shengtian,ZHAO Changsen,et al.NDVI Dynamics in the Upper Min River Since 2000[J].Mountain Research,2018,(4):345.[doi:10.16089/j.cnki.1008-2786.000330]
[8]马志婷,武志涛*,卫 洁.京津风沙源区干旱时空特征及对植被变化的影响[J].山地学报,2018,(04):536.[doi:10.16089/j.cnki.1008-2786.000350]
 MA Zhiting,WU Zhitao*,WEI Jie.Spatial and Temporal Variations of Droughts over the Beijing-Tianjin Sand Source Region and Their Effects on Vegetation Change[J].Mountain Research,2018,(4):536.[doi:10.16089/j.cnki.1008-2786.000350]
[9]付建新,曹广超*,李玲琴,等.1960-2014年祁连山日照时数时空变化特征[J].山地学报,2018,(05):709.[doi:10.16089/j.cnki.1008-2786.000367]
 FU Jianxin,CAO Guangchao *,LI Lingqin,et al.Temporal and Spatial Variation Characteristics of Sunlight Hours in the Qilian Mountain,China from 1960 to 2014[J].Mountain Research,2018,(4):709.[doi:10.16089/j.cnki.1008-2786.000367]
[10]刘江涛,等.1973-2016年雅鲁藏布江流域极端降水事件时空变化特征[J].山地学报,2018,(05):750.[doi:10.16089/j.cnki.1008-2786.000371]
 LIU Jiangtao,XU Zongxue,et al.Spatiotemporal Variation of Extreme Precipitation Events in the Yarlung Zangbo River Basin from 1973 to 2016, China[J].Mountain Research,2018,(4):750.[doi:10.16089/j.cnki.1008-2786.000371]

备注/Memo

备注/Memo:
收稿日期(Received date):2021-10-10; 改回日期(Accepted date):2022-08-22
基金项目(Foundation item): 青海省2020年第二批林业改革与发展基金湿地保护与恢复项目(QHTX-2020-043-02)。[Wetland Protection and Restoration Project of the Second Batch of Forestry Reform and Development Funds in Qinghai Province in 2020(QHTX-2020-043-02)]
作者简介(Biography): 童珊(1995-), 陕西西安人,博士研究生,主要研究方向:环境地表过程与生态响应。[TONG Shan(1995-), born in Xi'an, Shaanxi province, Ph.D. candidate, research on environmental surface process and ecological response] E-mail: 1661143102@qq.com
*通讯作者(Corresponding author): 曹广超(1971-),山东苍山人,博士,教授,主要研究方向:青藏高原地区环境变化与地理信息系统应用。[CAO Guangchao(1971-), born in Cangshan, Shandong province, Ph.D., professor, research on environmental change and geographic information system application in the Qinghai-Tibet Plateau] E-mail:Caoguangchao@qhnu.edu.cn
更新日期/Last Update: 2022-08-30