[1]李春雨,等.泥石流叠加堆积形态演化特征的实验研究[J].山地学报,2022,(2):235-248.[doi:10.16089/j.cnki.1008-2786.000668]
 LI Chunyu,LIU Jingjing*,CHEN Xiaoqing,et al.Experimental Investigation on the Morphological Evolution of Superimposed Deposition of Debris Flow[J].Mountain Research,2022,(2):235-248.[doi:10.16089/j.cnki.1008-2786.000668]
点击复制

泥石流叠加堆积形态演化特征的实验研究
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第2期
页码:
235-248
栏目:
山地灾害
出版日期:
2022-03-25

文章信息/Info

Title:
Experimental Investigation on the Morphological Evolution of Superimposed Deposition of Debris Flow
文章编号:
1008-2786-(2022)2-235-14
作者:
李春雨1 2刘晶晶1 2*陈晓清1李琪敏1 2
1. 中国科学院、水利部成都山地灾害与环境研究所 山地灾害与地表过程重点实验室,成都 610041; 2. 中国科学院大学,北京 100049
Author(s):
LI Chunyu12 LIU Jingjing12* CHEN Xiaoqing1 LI Qimin12
1. Key Laboratory of Mountain Hazards and Surface Process,Institute of Mountain Hazards and Environment,Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
泥石流 叠加堆积 堆积形态 偏移度
Keywords:
debris flow superimposed deposition depositional morphology offset degree
分类号:
P642.23
DOI:
10.16089/j.cnki.1008-2786.000668
文献标志码:
A
摘要:
泥石流堆积扇因叠加堆积过程而呈现复杂的地貌演化特征,如主体流路改变、扇体形态偏移等。目前对泥石流叠加堆积过程的研究较少,也未提出定量的形态偏移指标,这为泥石流预防和堆积扇土地利用带来困难。本文以代表性宽级配泥石流堆积物为原型材料,通过水槽实验,模拟不同密度泥石流的叠加堆积及其形态演化。利用3D扫描重建技术,对堆积形态的几何特征及演化过程进行了定量分析。结果表明:(1)泥石流叠加堆积过程可概括为纵向—垂向—横向三个发展阶段;(2)在密度相同的条件下,泥石流的堆积长度随叠加次数增加呈指数型衰减,堆积厚度呈幂次增加并逐渐稳定于一定极限值,堆积宽度随叠加次数增加呈现先增加后减小的趋势;(3)扇体形态偏移度与泥石流性质、运动特征以及堆积区地形之间存在幂函数关系。本研究明确了泥石流叠加堆积的物理过程和演化特征,建立了泥石流扇体形态偏移度的判别公式,为预测泥石流冲淤及致灾范围提供了理论基础,也为泥石流防治工程优化设计提供数据支撑。
Abstract:
Debris flow fans are generally created by superposition of multiple debris flows. As a chain of debris flows successively run out of gully mouth and then deposit on piedmont slope, they generally alter main flow path of debris flow and lead to deformation of alluvial fan, quite possibly resulting in deviation of the axis of debris flow fan and expansion in sedimentation ground, posing great threats to the local community in the vicinity. Unfortunately, little attention was paid to the phenomenon of superposition of debris flow fans as well as associated morphological evolution, and there was no quantitative description on morphological migration of debris flow fans. In this study, a flume model experiment was designed to simulate the superimposed deposition of multiple debris flows. Debris flows with densities of 2.00 g?cm-3, 1.90 g?cm-3, and 1.80 g?cm-3 were modelled using wide grading debris flow deposits. Then the morphology of debris flows was measured and visualized in form of DEM, and the evolution was described by the geometry and flow parameters. The results show that:(1)According to the features of superimposed deposition of multiple debris flows, the process could be divided into three stages: longitudinal, vertical and horizontal development stage.(2)Under the condition of the same density, the deposition length of debris flow decayed exponentially with the superposition times, while the deposition thickness increased exponentially to a limit; And the deposition width of debris flow increased at first and then decreases with the superposition times.(3)The offset degree of depositional morphology was a function of debris flow density, velocity and topography of the deposition area, which was greater under the condition of high density and low velocity of debris flow. This research not only clarifies the physical process and morphological evolution of superimposed deposition of multiple debris flows, but also establishes a discrimination formula for the offset degree of depositional morphology. It provides a theoretical basis for predicting the disaster range of debris flow.

参考文献/References:

[1] CUI Peng, GE Yonggang, ZHUANG Jianqi, et al. Soil evolution features of debris flow waste-shoal land [J]. Journal of Mountain Science, 2009,6(2):181-188. DOI: 10.1007/s11629-009-1035-1
[2] DING Mingtao, TANG Chuan, MIAO Cheng. Response analysis of valley settlements to the evolution of debris flow fans under different topographic conditions: A case study of the upper reaches of Min River, China [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(3):1639-1650. DOI: 10.1007/s10064-019-01641-9
[3] BRIGHENTI R, SPAGGIARI L, SEGALINI A, et al. Debris flow impact on a flexible barrier: Laboratory flume experiments and force-based mechanical model validation [J]. Natural Hazards, 2021, 106(1):735-756. DOI: 10.1007/s11069-020-04489-5
[4] TAKAHASHI T. Debris flow [J]. Annual Review of Fluid Mechanics, 1981, 13(1):57-77. DOI: 10.1146/annurev.fl.13.010181.000421
[5] PIERSON T C. Dominant particle support mechanisms in debris flows at Mt Thomas, New Zealand, and implications for flow mobility [J]. Sedimentology, 1981, 28(1):49-60. DOI: 10.1111/j.1365-3091.1981.tb01662.x
[6] BLAIR T C, MCPHERSON J G. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages [J]. Journal of Sedimentary Research, 1995, 65(3a):450-489. DOI: 10.1306/d42681b7-2b26-11d7- 8648000102c1865d
[7] WHIPPLE K X, DUNNE T. The influence of debris-flow rheology on fan morphology, Owens Valley, California [J]. Geological Society of America Bulletin, 1992, 104(7):887-900. DOI: 10.1130/0016-7606(1992)1042<0887:TIODFR>2.3.CO; 2
[8] 舒安平,张欣,唐川,等. 不同坡度条件下非均质泥石流堆积过程与特征[J]. 水力学报,2013, 44(11):1333-1337+1346. [SHU Anping, ZHANG Xin, TANG Chuan, et al. Analysis on the deposition processes and characteristics of non-homogeneous debris flow [J]. Journal of Hydraulics, 2013,44(11):1333-1337+1346] DOI: 10.13243/j.cnki.slxb.2013.11.001
[9] 侯圣山,曹鹏,陈亮,等. 基于数值模拟的耳阳河流域泥石流灾害危险性评价[J]. 水文地质工程地质,2021, 48(2):1-9. [HOU Shengshan, CAO Peng, CHEN Liang, et al. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation [J]. Hydrogeology and Engineering Geology, 2021, 48(2):1-9] DOI: 10.16030/j.cnki.issn.1000-3665. 202003057
[10] BRANNEY M J, KOKELAAR P. A reappraisal of ignimbrite emplacement: Progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite [J]. Bulletin of Volcanology, 1992, 54(6):504-520. DOI: 10.1007/BF00301396
[11] MAJOR J J. Depositional processes in large-scale debris-flow experiments [J]. The Journal of Geology, 1997, 105(3): 345-366. DOI: 10.1086/515930
[12] 李泳. 蒋家沟泥石流阵流的时空特征[J]. 自然杂志,2014, 36(5):319-324. [LI Yong. Spatiotemporal characteristics of debris flow in Jiangjia Gully [J]. Chinese Journal of Nature, 2014, 36(5):319-324] DOI: 10.3969/j.issn.0253-9608.2014.05.002
[13] 马超,何晓燕,胡凯衡. 我国高频率泥石流的雨量特征[J]. 中国地质灾害与防治学报,2015, 26(2):43-50. [MA Chao, HE Xiaoyan, HU Kaiheng. Rainfall parameter characteristics of high-frequency debris flow in China [J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(2):43-50] DOI: 10.16031/j.cnki.issn.1003-8035.2015.02.08
[14] ZHOU Wei, FANG Jiaoyong, TANG Chuan, et al. Empirical relationships for the estimation of debris flow runout distances on depositional fans in the Wenchuan earthquake zone [J]. Journal of Hydrology, 2019, 577:123932. DOI: 10.1016/j.jhydrol.2019.123932
[15] DELORME P, DEVAUCHELLE O, BARRIER L, et al. Growth and shape of a laboratory alluvial fan [J]. Physical Review E, 2018, 98(1):012907. DOI: 10.1103/PhysRevE.98.012907
[16] CLARKE L, QUINE T A, NICHOLAS A. An experimental investigation of autogenic behavior during alluvial fan evolution [J]. Geomorphology, 2010, 115(3):278-285. DOI: 10.1016/j.geomorph. 2009.06.033
[17] VENTRA D, NICHOLS G J. Autogenic dynamics of alluvial fans in endorheic basins: Outcrop examples and stratigraphic significance [J]. Sedimentology, 2014, 61(3):767-791. DOI: 10.1111/sed.12077
[18] DE HAAS T, BERG W V D, BRAAT L, et al. Autogenic avulsion, channelization and backfilling dynamics of debris-flow fans [J]. Sedimentology, 2016, 63(6):1596-1619. DOI: 10.1111/sed.12275
[19] D'AGOSTINO V, CESCA M, MARCHI L. Field and laboratory investigations of runout distances of debris flows in the Dolomites(Eastern Italian Alps)[J]. Geomorphology, 2010, 115(3-4):294-304. DOI: 10.1016/j.geomorph.2009.06.032
[20] DENSMORE A L, DE HAAS T, MCARDELL B, et al. Making sense of avulsions on debris-flow fans [G]//KEAN J W, COE J A, SANTI P M, et al. Proceedings of 7th International Conference on Debris-Flow Hazards Mitigation. Golden Colorado USA: Association of Environmental and Engineering Geologists, 2019: 637-644.
[21] SUWA H, OKANO K, KANNO T. Behavior of debris flows monitored on test slopes of Kamikamihorizawa Creek, Mount Yakedake, Japan [J]. International Journal of Erosion Control Engineering, 2009, 2(2):33-45. DOI: 10.13101/ijece.2.33
[22] DE HAAS T, DENSMORE A L, STOFFEL M, et al. Avulsions and the spatio-temporal evolution of debris-flow fans [J]. Earth Science Reviews, 2017, 177:1-52. DOI: 10.1016/j.earscirev.2017. 11.007
[23] DE HAAS T, KRUIJT A, DENSMORE A L. Effects of debris flow magnitude-frequency distribution on avulsions and fan development [J]. Earth Surface Processes and Landforms, 2018, 43(13):2779-2793. DOI: 10.1002/esp.4432
[24] FIELD J. Channel avulsion on alluvial fans in southern Arizona [J]. Geomorphology, 2001, 37(1):93-104. DOI: 10.1016/S0169-555X(00)00064-7
[25] THOMAS D S G. Arid zone geomorphology: Process, form and change in drylands [M]. Britain: Blackwell Press, 2011:333-364
[26] REITZ M D, JEROLMACK D J. Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth [J]. Journal of Geophysical Research, 2012, 117:F02021. DOI: 10.1029/2011JF002261
[27] DE HAAS T, DENSMORE A L, HOND T, et al. Fan-surface evidence for debris-flow avulsion controls and probabilities, Saline Valley, California [J]. Journal of Geophysical Research: Earth Surface, 2019:1-100. DOI: 10.1029/2018JF004815
[28] LEENMAN A, EATON B. Mechanisms for avulsion on alluvial fans: Insights from high-frequency topographic data [J]. Earth Surface Processes and Landforms, 2021:1-17. DOI: 10.1002/esp.5059
[29] 周必凡,李德基,罗德富,等. 泥石流防治指南[M]. 北京:科学出版社,1991:50-90. [ZHOU Bifan, LI Deji, LUO Defu, et al. Guide for debris flow prevention and control [M]. Beijing: Science Press, 1991:50-90]
[30] 崔之久. 泥石流沉积与环境[M]. 北京:海洋出版社,1998:37-39. [CUI Zhijiu. Debris flow deposition and environment [M]. Beijing: China Ocean Press, 1998:37-39]
[31] HOOKE R L. Processes on arid-region alluvial fans [J]. The Journal of Geology, 1967, 75(4):438-460. DOI: 10.2307/30085004

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(2):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(2):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(2):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(2):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(2):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(2):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(2):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(2):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(2):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(2):495.

备注/Memo

备注/Memo:
收稿日期(Received date):2022-03-03; 改回日期(Accepted date):2022-04-21
基金项目(Foundation item):国家自然科学基金(41877261,U19A2049); 中国科学院西部青年学者项目(E2R2180180)。 [National Natural Science Foundation of China(41877261,U19A2049); West Young Scholars Program of the Chinese Academy of Sciences(E2R2180180)]
作者简介(Biography):李春雨(1997-),女,河南驻马店人,硕士研究生,主要研究方向:山地灾害理论及工程防治。 [LI Chunyu(1997-), female, born in Zhumadian, Henan province, M.Sc. candidate, research on mountain disaster theory and engineering prevention] E-mail: lichunyu0331@126.com
*通讯作者(Corresponding author):刘晶晶(1981-),女,四川成都人,博士,副研究员,主要研究方向:山地灾害理论及工程防治。[LIU Jingjing(1981-), female, born in Chengdu, Sichuan province, Ph.D., associate professor, research on mountain disaster theory and engineering prevention] E-mail: liujingjing@imde.ac.cn
更新日期/Last Update: 2022-03-30