[1]付江涛a,李晓康b.垂穗披碱草根系力学特性统计分析[J].山地学报,2020,(6):894-903.[doi:10.16089/j.cnki.1008-2786.000565]
 FU Jiangtaoa,LI Xiaokangb.Statistical Analysis on Mechanical Characteristics of Roots of Elymus nutans[J].Mountain Research,2020,(6):894-903.[doi:10.16089/j.cnki.1008-2786.000565]
点击复制

垂穗披碱草根系力学特性统计分析
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第6期
页码:
894-903
栏目:
山地灾害
出版日期:
2020-12-25

文章信息/Info

Title:
Statistical Analysis on Mechanical Characteristics of Roots of Elymus nutans
文章编号:
1008-2786-(2020)6-894-10
作者:
付江涛a李晓康b
陕西理工大学 a.土木工程与建筑学院; b.数学与计算机科学学院,陕西 汉中 723000
Author(s):
FU Jiangtaoa LI Xiaokangb
a. School of Civil Engineering and Architecture; b. School of Mathematic and Computer Science, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
关键词:
植被护坡 根系力学指标 分布函数
Keywords:
slope protection by vegetation root tensile mechanical index distribution function
分类号:
P642.5
DOI:
10.16089/j.cnki.1008-2786.000565
文献标志码:
A
摘要:
垂穗披碱草作为一种适应性强、分布广泛的优良水土保持植物,广泛应用于各类山区生态恢复/修复工程。为合理评估垂穗披碱草在水土保持工程中的力学作用,本文对生长于青海省河南县的多年野生垂穗披碱草(Elymus nutans Griseb.)根系进行单根拉伸试验,测定其单根根径、抗拉力、抗拉强度、拉伸率和拉伸模量等五项力学指标; 通过数理统计模型(正态分布、瑞利分布、伽马分布和威布尔分布)对五项力学指标分布特性进行统计分析; 采用卡方检验(χ2检验)和柯尔莫哥洛夫-斯米洛夫检验(K-S检验)对五项指标在不同分布函数中的显著性进行了检验; 对比了两种检验方法的优劣,确定各指标的最优分布函数。研究结果表明:垂穗披碱草根系力学五项指标表现出巨大的变异性,变异系数为37.01%~76.00%; 四种分布函数均可定性描述根系各指标的分布特征,但不同指标在不同分布函数下表现出一定程度的差异; 相较于χ2检验,K-S检验由于其更适用于小样本数据,其检验结果更具有可信性; 五项指标中,根径和拉伸率最优分布函数均为伽马分布,抗拉力和抗拉强度最优分布函数均为威布尔分布,拉伸模量最优分布函数为正态分布。该研究结果对于深入认识垂穗披碱草根系力学特性,揭示垂穗披碱草在水土保持工程中的力学机制具有重要的理论价值。
Abstract:
Due to the extensive adaptability in water and soil conservation, Elymus nutans Griseb. has been introduced extensively and successfully into ecological recovery and re-establishment engineering for deserted land reclamation and ecosystem restoration for the past decades. To sufficiently understand mechanical performance and properly assess the role of E. nutans roots in soil and water conservation application, roots of uncultivated perennial E. nutans sampled at field sites of Henan county, Qinghai Province, China were taken as targeted objects. The mechanical property indexes(diameter, tensile resistance, tensile strength, tensile strain and tensile modulus)were determined using indoor tension tests. Built on these mechanical property indexes, four statistical functions, i.e., Normal distribution, Rayleigh distribution, Gamma distribution, and Weibull distribution, were adapted to describe the distribution of these mechanical indexes of E. nutans. Subsequently Chi-square test(Χ2 test)and Kolmogorov-Smirov test(K-S test)were applied to test the goodness of fitting of these distribution functions to the five mechanical indexes. Based on the goodness of fitting, the optimal distribution functions of the mechanical indexes was determined. The results showed that great variability in root mechanical indexes was discovered. And nearly all the distribution functions could be used to describe the distribution of root mechanical indexes. In contrast to Χ2 test, the testing results based on K-S test were more reliable due to its advantages in testing small sample. Of the five mechanical indexes, the optimal distribution functions for diameter and tensile strain were Gama distribution, tensile strength/resistance's optimal functions were Weibull distribution, and tensile modulus' optimal distribution was Normal distribution. The findings improve our understandings on the mechanical properties of herbaceous root and could be useful for slope protection using herbaceous roots.

参考文献/References:

[1] 王平,王沛,孙万斌,等. 8份披碱草属牧草苗期抗旱性综合评价[J]. 草地学报,2020,28(2):397-404. [WANG Ping, WANG Pei, SUN Wanbin, et al. Comprehensive evaluation of drought resistance of eight Elymus Germplasms at seedling stage[J]. Acta Agrestia Sinica, 2020, 28(2): 397-404]
[2] 唐子钦,陈有军,胡健,等. 川西北沙化草地7种牧草根系构型及根鞘特征分析[J]. 中国草地学报,2020,42(2):22-31. [TANG Ziqing, CHEN Youjun, HU Jian, et al. Analysis of root architecture and rhizosheath characteristics of seven forage species in desertified grassland of northwest Sichuan[J]. Chinese Journal of Grassland, 2020, 42(2): 22-31]
[3] 杨鑫光,李希来,张静,等. 高寒煤矿区3种人工栽培种对自然降温的生理响应[J]. 中国草地学报,2019,41(6):72-79. [YANG Xinguang, LI Xilai, ZHANG Jing, et al. Physiological response of three cultivar grasses to natural cooling in alpine coal mine area[J]. Chinese Journal of Grassland, 2019, 41(6): 72-79]
[4] 张涪平. 藏中拉屋铜矿区生态恢复研究[D].武汉:华中农业大学,2012:75-81. [ZHANG Fuping. Effect of heavy metal pollution on ecological environment on Lawu Mine in central Tibet[D]. Wuhan: Huazhong Agricultural University, 2012: 75-81]
[5] 李淑霞. 寒旱环境西宁盆地植物耐盐特性及其降盐效应试验研究[D].北京:中国科学院大学(中国科学院青海盐湖研究所),2018: 34-80. [LI Shuxia. Study on salt tolerance and salt reduction effect of plants in cold and arid environment in Xining Basin[D]. Beijing: The University of Chinese Academy of Sciences(Qinghai Salt Lake Research Institute), 2018: 34-80]
[6] LI Mingqun, YANG Jian, WANG Xin, et al. Transcriptome profiles identify the common responsive genes to drought stress in two Elymus species[J]. Journal of Plant Physiology, 2020, 250:153183.
[7] FU Juanjuan, SUN Pengyue, LUO Yilan, et al. Brassinosteroids enhance cold tolerance in Elymus nutans via mediating redox homeostasis and proline biosynthesis[J]. Environmental and Experimental Botany, 2019, 167: 103831.
[8] MAO Zhuxin, LINGHU Yuwei, YU Gang. Fatty acid and amino acid contents of Elymus nutans Griseb.(Poaceae: Triticeae)in different regions on Qinghai-Tibetan Plateau[J]. Biochemical Systematics and Ecology, 2019, 85: 31-34.
[9] 梁坤伦,王明艳,孙金豪,等. 外源多胺对2种牧草耐旱性生理指标的影响[J]. 分子植物育种,2020,18(11):3751-3758. [LIANG Kunlun, WANG Mingyan, SUN Jinhao, et al. Effects of exogenous polyamines on drought tolerance physiological indexes of two pasture grasses[J]. Molecular Plant Breeding, 2020, 18(11): 3751-3758]
[10] 刘艳君,祁娟,柳茜,等. 垂穗披碱草种子萌发的耐盐性研究[J]. 草原与草坪,2014,34(4):61-65. [LIU Yanjun, QI Juan, LIU Qian, et al. Study on salt tolerance of three Elymus nutans seeds in germination period[J]. Grassland and Turf, 2014, 34(4): 61-65]
[11] 刘亚斌,李淑霞,余冬梅,等. 西宁盆地黄土区典型草本植物单根抗拉力学特性试验[J]. 农业工程学报,2018,34(15):157-166. [LIU Yabin, LI Shuxia, YU Dongmei, et al. Experiment on single root tensile mechanical properties of typical herb species in loess region of Xining Basin[J]. Transactions of the Chinese Society of Agricultural Engineering,2018, 34(15): 157-166]
[12] 赵燕,杜文华. 青藏高原东缘垂穗披碱草草地群落组成及生产力[J]. 草业科学,2018,35(12):2978-2987. [ZHAO Yan, DU Wenhua. Community composition and productivity of Elymu nutans in the eastern margin of Qinghai-Tibet Plateau[J]. Acta Agrestia Sinica, 2018, 35(12): 2978-2987]
[13] 陈有军,苟小林,孙建,等. 青藏高原东南缘沙地3种治沙草本根系形态格局特征[J].草业科学,2019,36(4):1137-1147+928. [CHEN Youjun, GOU Xiaolin, SUN Jian, et al. Root morphology patterns of three grasses used to restore the desert on the Southeast Tibetan Plateau[J]. Pratacultural Science, 2019, 36(4): 1137-1147+928]
[14] 李雪萍,赵成章,任悦,等. 尕海湿地不同密度条件下垂穗披碱草根系分形结构[J]. 生态学报,2018,38(4):1176-1182. [LI Xueping, ZHAO Chengzhang, REN Yue, et al. Fractal root systems of Elymus nutans under different density conditions in Gahai Wetland[J]. Acta Ecologica Sinica, 2018, 38(4): 1176-1182]
[15] 洪苗苗,汪霞,赵云飞,等. 浅层滑坡多发区典型植被恢复树种根系对土壤抗剪强度影响[J].山地学报,2018,36(1):107-115.[HONG Miaomiao, WANG Xia, ZHAO Yunfei, et al. Effect of ecological restoration plants root on slope reinforcement in shallow landslide prone region[J]. Mountain Research, 2018, 36(1): 107-115]
[16] 刘昌义,胡夏嵩,李希来,等. 黄河源区高寒草地根-土复合体抗剪强度与土壤营养元素分布关系[J]. 山地学报,2020,38(3):349-360. [LIU Changyi, HU Xiasong, LI Xilai, et al. Relationship between shear strength of root soil composite systems of alpine grassland and distribution of soil nutrient elements in the source region of the Yellow River, China[J]. Mountain Research, 2020, 38(3): 349-360]
[17] 李华坦,李国荣,赵玉娇,等. 模拟自然降雨条件下植物根系增强边坡土体抗剪强度特征[J]. 农业工程学报,2016,32(4): 142-149. [LI Huatan, LI Guorong, ZHAO YuJiao, et al. Characteristics of slope soil shear strength reinforced by vegetation roots under artificially simulated rainfall condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4): 142-149]
[18] 李华坦,赵玉娇,李国荣,等. 寒旱环境黄土区植物护坡原位模拟降雨试验研究[J].水土保持研究,2014,21(6):304-311. [LI Huatan, ZHAO Yujiao, LI Guorong, et al. Experimental research on slope protection with vegetation under situ rainfall simulation in cold and arid environments of loess area[J]. Research of Soil and Water Conservation, 2014,21(6): 304-311]
[19] 窦增宁,胡夏嵩,刘昌义,等. 模拟降雨条件下黄土区边坡植物护坡效应[J].人民黄河,2018,40(3):83-87. [DOU Zengning, HU Xiasong, LIU Changyi, et al. Hydrological effects of vegetations in slope protection in loess area under simulated rainfall conditions[J]. Yellow River, 2018, 40(3): 83-87]
[20] 李淑霞,刘亚斌,余冬梅,等. 寒旱环境盐胁迫条件下两种草本植物的根系力学特性研究[J]. 盐湖研究,2019,27(1):116-131. [LI Shuxia, LIU Yabin, YU Dongmei, et al. Research on mechanical characteristics of two herbaceous roots under salt stress in cold and arid environment[J]. Journal of Salt Lake Research, 2019, 27(1): 116-131]
[21] ZHANG Chaobo,CHEN Lihua,JIANG Jing. Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability[J]. Geomorphology, 2014, 206: 196-202.
[22] 刘昌义,窦增宁,胡夏嵩,等. 黄河源区高寒草地植物组合对根-土复合体抗剪强度的影响[J]. 草地学报,2019,27(1):43-52. [LIU Changyi, DOU Zengning, HU Xiasong, et al. Research on the effect of plant combination on types on the shear strength of the root-soil composite system of alpine grass land in the Source Region on the Yellow River[J]. Acta Agrestia Sinica, 2019, 27(1): 43-52]
[23] NARESH K, SHANKAR K, VELMURUGAN R. Reliability analysis of tensile strengths using Weibull distribution in glass/epoxy and carbon/epoxy composites[J]. Composites Part B, 2018, 133: 129-144.
[24] 陈敬海,吴勇,单长伟,等. 两种分布函数在曲轴扭转疲劳寿命分析中的应用[J]. 理化检验-物理分册,2016,52(11):781-785.[CHEN Jinhai, WU Yong, SHAN Changwei, et al. Application of two distribution functions on the torsion fatigue life analysis of crankshafts[J]. Physical Testing & Chemical Analysis, 2016, 52(11): 781-785]
[25] SCHEIBLECKER M. Between cointegration and multicointe-gration: Modelling time series dynamics by cumulative error correction models[J]. Economic Modelling, 2013, 31: 511-517.
[26] DIAMANTOPOULOUA M J, ÖZÇELIK R, CRECENTE-CAMPO F, et al. Estimation of Weibull function parameters for modelling tree diameter distribution using least squares and artificial neural networks methods[J]. Biosystems Engineering, 2015, 133: 33-45.
[27] 胡远满,徐文铎,郑元润. 长白松自然同龄种群分布格局的研究[J]. 应用生态学报,1996,7(2):113-116. [HU Yuanman, XU Wenduo, ZHENG Yuanrun. Spatial distribution pattern of natural Pinus sylvestrif ormis population with same age[J]. Chinese Journal of Applied Ecology, 1996, 7(2): 113-116]
[28] 吴可,殷鸣放,周永斌,等. 白石砬子自然保护区林木直径分布及其动态变化[J]. 东北林业大学学报,2010,38(5): 20-23. [WU Ke, YIN Mingfang, ZHOU Yongbin, et al. Diameter distribution and dynamic changes of trees in Baishilazi National Nature Reserve[J]. Journal of Northeast Forestry University, 2010, 38(5): 20-23]
[29] TENG X, MAE H, BAI Y. Probability characterization of tensile strength of an aluminum casting[J]. Materials Science and Engineering A, 2010, 527: 4169-4176
[30] 张继周,缪林昌. 岩土参数概率分布类型及其选择标准[J]. 岩石力学与工程学报,2009,28(增2):3526-532.[ZHANG Jizhou, MIAO Linchang. Types and selection criteria of probability distribution of rock and soil parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Supp.2): 3526-3532]
[31] 付江涛,余冬梅,李晓康,等. 柴达木盆地盐湖区盐生植物根-土复合体物理力学性质指标概率统计分析[J]. 岩石力学与工程学报,2020,39(8):1696-1709. [FU Jiangtao, YU Dogmei, LI Xiaokang, et al. Statistical probability analysis of the physical index of rooted soil in Qiadam basin[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1696-1709]
[32] GUO M, ZHANG T H, CHEN B W, et al. Tensile strength analysis of palm leaf sheath fiber with Weibull distribution[J]. Composites: Part A, 2014, 62: 45-51.
[33] DENG Bin, JIANG Danyu, GONG Jianghong. Is a three-parameter Weibull function really necessary for the characterization of the statistical variation of the strength of brittle ceramics?[J]. Journal of the European Ceramic Society, 2018, 38(4): 2234-2242.
[34] MONTEIRO S N, MARGEM F M, BRAGA F O, et al. Weibull analysis of the tensile strength dependence with fiber diameter of giant bamboo[J]. Journal of Material Research and Technology, 2017, 6(4): 317-322.
[35] LEI Weisheng, ZHANG Peilei, YU Zhishui, et al. Statistics of ceramic strength: use ordinary Weibull distribution function or Weibull statistical fracture theory?[J]. Ceramics International, 2020, 46: 20751-20768.
[36] GARY D H, ANDREW T L. Biotechnical slope protection and erosion control[M].New York: Van Nostrand Reinhold Company, 1982: 37-54.
[37] 王萍花,陈丽华,冀晓东,等. 4种常见乔木单根拉伸的应力应变曲线分析[J].水土保持通报,2012,32(3):17-22. [WANG Pinghua, CHEN Lihua, JI Xiaodong, et al. Analysis of stress-strain curves for four common arbor root systems[J]. Bulletin of Soil and Water Conservation, 2012, 32(3): 17-22]
[38] 张云伟,惠尚,卜晓磊,等. 3种散生竹的单根抗拉力学特性[J].林业科学,2013,49(7): 183-187. [ZHANG Yunwei, HUI Shang, BU Xiaolei, et al. Mechanical characteristics of tensile strength for three monopodial bamboo single roots[J]. Scientia Silvae Sinicae, 2013, 49(7): 183-187]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-07-14; 改回日期(Accepted date): 2020-11-02
基金项目(Foundation item):陕西教育厅专项基金(18JK0141); 陕西理工大学人才启动基金(SLGQD2017-02)。[Special Fund for Shaanxi Education Department(18JK0141); Talent Start-up Fund for Shaanxi University of Technology((SLGQD2017-02)]
作者简介(Biography):付江涛(1981-)男,陕西汉台人,博士,讲师,主要研究方向:环境岩土工程、工程力学。[FU Jiangtao(1981-), male, born in Hantai, Shaanxi Province, Ph. D., lecture, specialized in environmental geotechnics, and engineering mechanics] E-mail: fujiangtao865@sina.com
更新日期/Last Update: 2020-11-30