[1]陈 露*,何 军,冉清红.喜马拉雅中段吉隆流域构造地貌数字特征[J].山地学报,2020,(5):787-797.[doi:10.16089/j.cnki.1008-2786.000555]
 CHEN Lu*,HE Jun,RAN Qinghong.Digital Features of Tectonic Landform of the Gyirong Watershed in the Middle Himalayas,China[J].Mountain Research,2020,(5):787-797.[doi:10.16089/j.cnki.1008-2786.000555]
点击复制

喜马拉雅中段吉隆流域构造地貌数字特征
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第5期
页码:
787-797
栏目:
山地技术
出版日期:
2020-11-10

文章信息/Info

Title:
Digital Features of Tectonic Landform of the Gyirong Watershed in the Middle Himalayas,China
文章编号:
1008-2786-(2020)5-787-11
作者:
陈 露12*何 军3冉清红1
1.成都师范学院 西部人文研究所,成都 611130; 2.西藏自治区科技信息研究所,拉萨 850001; 3.西藏自治区水文水资源勘测局 山南水文水资源分局,西藏 山南 856000
Author(s):
CHEN Lu12* HE Jun3 RAN Qinghong1
1.Institute of Humanity Resources in Western China, Chengdu Normal University, Chengdu 611130, China; 2. Institute of Science & Technology Information of Tibet Autonomous Region, Lhasa 850001, China; 3. Shannan Branch of Hydrology and Water Resources Survey Bureau of Tibet Autonomous Region, Shannan 856000, Tibet, China
关键词:
数字地形特征 地形解释 构造地貌 吉隆流域 喜马拉雅造山带
Keywords:
digital topographic feature topographic interpretation tectonic landform Gyirong watershed Himalaya orogen
分类号:
P931.2
DOI:
10.16089/j.cnki.1008-2786.000555
文献标志码:
A
摘要:
在造山带发育的河流记录了山脉隆升历史,流域地貌蕴含丰富构造信息,开展造山带流域构造地貌研究对揭示地貌发育的动力机制、尺度效应和响应过程具有重要意义。受制于地形数据的尺度差异,造山带小尺度流域数字地形特征与构造响应之间的关系常常难以解释。利用Aster GDEM2,选取喜马拉雅造山带中段小空间尺度吉隆流域,计算14×76 km条带高程、200 m等高距地形起伏度和平均坡度三类基本地形指标,结合区域地质背景和喜马拉雅隆升过程,分析地形指标数字特征及其与构造、岩性、气候的关系。结果显示:条带高程的峰顶面曲线周期性变化较好地响应区域构造展布,表现为逆断层接触面和背斜翼部,峰顶面抬升; 在藏南拆离构造以北的北倾下滑正断层上盘和褶皱轴部,峰顶面降低; 平均高程先增加后稳定的形态指示吉隆流域具有高海拔、低起伏特征,是隆升沉降—剥蚀沉积过程长期作用的地形证据; 地形起伏度和平均坡度一致变化,反映了4000 m高程应为岩性和气候的垂直分异界线。本文基于普通数字高程模型提取基本地形指标的方法,适宜地形变化特征显著的小尺度流域构造地貌分析,为研究造山带地貌发育规律提供了新思路,验证了Aster GDEM2分析与解释地形特征的能力及其存在的典型地貌标志识别缺陷,可为进一步研究数字地形尺度效应和地貌解释提供借鉴。
Abstract:
Rivers developed in orogen record the history of mountain uplift, and the watersheds contains rich tectonic information. To research the tectonic geomorphology in the orogenic watersheds is of great significance to reveal the dynamic mechanism, scale effect and response process of geomorphology development. The discussion on the relationship between topographic features of small-scale watershed and tectonic response is often difficult to explain due to scale differences in topographic data. In this paper, 14 km in width × 76 km in length swath elevations, 200 m contour interval topographic relief, and average slope angle of a small-spatial-scale Gyirong Watershed in the middle Himalayan orogen were calculated using Aster GDEM2 data with 30 m spatial resolution. Based on the regional geological background and Himalayan uplift process, the digital topographic characteristics of Gyirong Watershed and their relationships with structure, lithology, and climate were analyzed. The results showed that the periodic spatial change at the summit level on swath elevation curves had a clear relationship with the regional tectonic distribution. This regularity was manifested by summit level, namely the maximum elevation curve, uplift in the contact surface of reverse faults and anticlinal wing; in the north of Southern Tibet Detachment Structures, summit level declined with the north-dipping normal faults and folds axis. Average elevation increased at first and then stabilized, indicating that the Gyirong Watershed is characterized by high-elevation and low-relief, which provided topographic evidence for the long-term action of tectonic uplift and erosional accumulation process. The topographic relief and average slope changed consistently, which reflected that 4000 m elevation is the vertical differentiation boundary for the lithology and climate. The method of extracting basic topographic indexes from common digital elevation model products is suitable for the analysis of the structural geomorphology of small-scale watershed with significant terrain change characteristics. It also provides an easy access to studying geomorphic development laws. This study verifies the ability of Aster GDEM2 data to analyze and interpret digital topographic features, as well as some defects in identification of typical geomorphic signs. Therefore, this study can serve as an informative reference for further studies on digital topographic scale effects and topographic interpretation.

参考文献/References:

[1] BURBANK W D. Characteristic size of relief [J]. Nature, 1992, 359: 483-484.
[2] 李志林,朱庆,谢潇. 数字高程模型[M].3版.北京:科学出版社,2017:12-15. [LI Zhilin,ZHU Qing,XIE Xiao. Digital elevation models(the third edition)[M]. Beijing: Science Press, 2017: 12-15]
[3] XIONG Liyang, TANG Guoan, YUAN Baoyin, et al. Geomorphological inheritance for loess landform evolution in a severe soil erosion region of Loess Plateau of China based on digital elevation models[J]. Science China Earth Sciences, 2014,(8): 1944-1952.
[4] WANG Xinyuan, LUO Lei, GUO Huadong, et al. Cratering process and morphological features of the Xiuyan impact crater in Northeast China [J]. Science China Earth Sciences, 2013, 56(10): 1629-1638.
[5] HILLEY E G, ARROWSMITH R J. Geomorphic response to uplift along the Dragon's Back pressure ridge, Carrizo Plain, California [J]. Geology, 2008, 36(5): 367-370.
[6] STOLAR B D, WILLETT D S, MONTGOMERY R D. Characterization of topographic steady state in Taiwan[J]. Earth and Planetary Sciences Letters, 2007, 261: 421-431.
[7] ZHANG Huiping, ZHANG Peizhen, FAN Qicheng. Initiation and recession of the fluvial knickpoints: a case study from the Yalu River-Wang tian'e volcanic region, northeastern China [J]. Science China Earth Sciences, 2011, 54(11): 1746-1753.
[8] HAVIV I, ENZEL Y, WHIPPLE X K, et al. Evolution of vertical knickpoints(waterfalls)with resistant cap rock: insights from numerical modeling [J]. Journal of Geophysical Research, 2010, 115: 1-22.
[9] DONG Shaopeng, ZHANG Peizhen, ZHANG Huiping, et al. Drainage responses to the activity of the Langshan Range-Front fault and tectonic implication[J]. Journal of Earth Science, 2018, 29(1): 193-209.
[10] 张会平, 张培震,吴庆龙,等. 循化—贵德地区黄河水系河流纵剖面形态特征及其构造意义[J].第四纪研究,2008,28(2):299-309. [ZHANG Huiping, ZHANG Peizhen, WU Qinglong, et al. Morphological characteristics and structural significance of longitudinal section of the Yellow River system in xunhua-guide area [J]. Quaternary Sciences, 2008, 28(2):299-309]
[11] 戴岩,王先彦,王胜利, 等. 地貌形态指数反映的青藏高原东北部宛川河流域新构造活动[J]. 地理学报,2016,71(3): 412-421. [DAI Yan, WANG Xianyan, WANG Shengli, et al. The neotectonic activity of Wanchuan catchment reflected by geomorphic indices [J]. Acta Geographica Sinica, 2016,71(3): 412-421]
[12] VIJITH H, PRASANNAKUMAR V, SHARATH MOHAN A M, et al. River and basin morphometric indexes to detect tectonic activity: a case study of selected river basins in the South Indian Granulite Terrain(SIGT)[J]. Physical Geography, 2017, 38(4): 360-378.
[13] 赵国松,杜耘,凌峰, 等. ASTER GDEM与SRTM3高程差异影响因素分析[J]. 测绘科学,2012,37(4): 167-170.[ZHAO Guosong, DU Yun, LING Feng, et al. Analysis of influencing factors on height differences between ASTER GDEM and SRTM3[J]. Science of Surveying and Mapping, 2012,37(4): 167-170]
[14] GONGA-SAHOLIARILIVA N, GUNNELL Y, PETIT C, et al. Techniques for quantifying the accuracy of gridded elevation models and for mapping uncertainty in digital terrain analysis[J]. Progress in Physical Geography, 2013, 35(6): 739-764.
[15] KUHNI A, PFIFFNER, A O. The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: topographic analysis from a 250m DEM [J]. Geomorphology, 2001, 41: 285-307.
[16] 许炯心,李炳元,杨小平,等. 中国地貌与第四纪研究的近今进展与未来展望[J]. 地理学报,2009,64(11): 1375-1393. [XU Jiongxin, LI Bingyuan, YANG Xiaoping, et al. Recent progress in geomorphology and quaternary geology in China and some perspectives [J]. Acta Geographica Sinica, 2009, 64(11): 1375-1393]
[17] MOLNAR P,TAPPONNIER P. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science,1975, 189(4201): 419-426.
[18] 尹安. 喜马拉雅造山带新生代构造演化:沿走向变化的构造几何形态、剥露历史和前陆沉积的约束[J]. 地学前缘,2006,13(5): 416-515. [YIN An. Cenozoic tectomic evolution of the Himalayan Orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth Science Frontiers, 2006, 13(5): 416-515]
[19] VALDIYA S K. Evolution of the Himalaya[J]. Tectonophysics, 1984, 105: 229-248.
[20] 潘裕生,汪一鹏,常承法. 喜马拉雅板块活动证据兼论青藏高原形成模式[J]. 地震地质,1980,2(2):1-12. [PAN Yusheng, WANG Yipeng, CHANG Chengfa. Evidence of plate activity in Himalayas and a model for formation of Qinghai-Xizang Plateau[J]. Seismology and Geology, 1980, 2(2): 1-12]
[21] 王德朝,张进江,杨雄英,等. 吉隆盆地构造、环境演化与青藏高原隆升[J]. 北京大学学报(自然科学版),2009,45(1):79-89. [WANG Dechao, ZHANG Jinjiang, YANG Xiongying, et al. Tectonic and environmental evolution of Gyirong Basin, and its relationship to the uplift of Tibetan plateau[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(1): 79-89]
[22] 王富葆,李升峰,张捷,等. 吉隆盆地的形成演化、环境变迁与喜马拉雅山隆起[J]. 中国科学D辑:地球科学,1996,26(4):329-335. [WANG Fubao, LI Shengfeng, ZHANG Jie, et al. The formation and evolution, environmental transition of Gyirong Basin and uplift of Himalaya[J]. Science China Series D-Earth Science, 1996, 26(4): 329-335]
[23] 孙黎明,阎同生,唐桂英,等. 西藏吉隆盆地新近纪孢粉组合及古地理研究[J]. 中国地质,2007,34(1):49-54. [SUN Liming, YAN Tongsheng, TANG Guiying, et al. Neogene sporopollen assem blages and paleogeography in the Gyirong Basin, Tibet[J]. Geology in China, 2007, 34(1): 49-54]
[24] 陈万勇. 喜马拉雅山中段上新世三趾马动物群生活环境的探讨[J]. 古脊椎动物与古人类,1982,20(1):45-53. [CHEN Wangyong. Pliocene environment of Hipparion fauna of middle Himalaya range[J]. Vertebrata Palaslatica, 1982, 20(1): 45-53]
[25] 孙立新,李金和,张振利. 西藏吉隆地区白垩纪复理石相遗迹化石及其地质意义[J]. 地质通报,2002,21(11):745-748. [SUN Lixin, LI Jinhe, ZHANG Zhenli. Trace fossils of cretaceous flysch facies in the Gyirong area, Tibet, and their geological significance[J]. Geological Bulletin of China, 2002, 21(11): 745-748]
[26] 朱才伐,田立富,孙黎明,等. 藏南吉隆地区二叠纪生物地层[J]. 地层学杂志,2008,32(3):333-339. [ZHU Caifa, TIAN Lifu, SUN Liming, et al. Permian biostratigraphy from the Jilong area, southern Xizang[J]. Journal of Stratigraphy, 2008, 32(3): 333-339]
[27] 岳乐平,邓涛,张睿,等. 西藏吉隆—沃马盆地龙骨沟剖面古地磁年代学及喜马拉雅山抬升记录[J]. 地球物理学报,2004,47(6):1009-1016. [YUE Leping, DENG Tao, ZHANG Rui, et al. Paleomagnetic chronology and records of Himalayan uplift on the longgugou section of Gyirong-Oma basin the Xizang(Tibet)[J]. Chinese Journal of Geophysics, 2004, 47(6): 1009-1016]
[28] USGS. ASTER GDEM 2 readme [EB/OL].(2011-10)[2020-11-04]. https://lpdaac.usgs.gov.
[29] HARBOR D, GUNNELL Y. Along-strike escarpment heterogeneity of the western Ghats: a synthesis of drainage and topography using digital morphometric tools [J]. Journal Geological Society of India, 2007, 70: 411-426.
[30] AHNERT F. Local relief and the height limits of mountain ranges [J]. American Journal of Science, 1984, 284: 1035-1055.
[31] 周启鸣,刘学军. 数字地形分析[M]. 北京: 科学出版社,2006:112. [ZHOU Qiming, LIU Xuejun. Data terrain analysis[M]. Beijing: Science Press, 2006:112]
[32] 涂汉明,刘振东. 中国地势起伏度最佳统计单元的求证[J]. 湖北大学学报(自然科学版),1990,12(3):266-271. [TU Hanming, LIU Zhendong. Demonstrating on optimum statistic unit of relief amplitude in China [J]. Journal of Hubei University(Natural Science), 1990, 12(3): 266-271]
[33] 张朝忙,刘庆生,刘高焕,等. SRTM3与ASTERGDEM数据处理及应用进展[J]. 地理与地理信息科学,2012,28(5):29-34. [ZHANG Zhaomang, LIU Qingsheng, LIU Gaohuan, et al. Data processing and application progress of SRTM3 and ASTER GDEM [J]. Geography and Geo-Information Science, 2012, 28(5): 29-34]
[34] O'CALLAGHAN F J, MARK M D. The extraction of drainage networks from digital elevation data [J]. Computer Vision, Graphics, and Image Processing, 1984, 28: 323-344.
[35] 杨雄英,张进江,戚国伟,等. 吉隆盆地周缘构造变形特征及藏南拆离系启动年龄[J]. 中国科学D辑:地球科学,2009,39(8):1128-1139. [YANG Xiongying, ZHANG Jinjiang, QI Guowei, et al. Structure and deformation around the Gyirong basin, northern Himalaya, and onset of the south Tibetan detachment system[J]. Science China Series D-Earth Science, 2009, 39(8): 1046-1058]
[36] 张振利,孙肖,李广栋,等. 西藏普兰、吉隆沟一带藏南拆离构造新认识[J]. 沉积与特提斯地质,2006,26(2):1-6. [ZHANG Zhenli, SUN Xiao, LI Guangdong, et al. New explanation of detachment structures in the Burang and Gyironggou regions, southern Xizang [J]. Sedimentary Geology and Tethyan Geology, 2006, 26(2): 1-6]
[37] SCHMIDT M K, MONTGOMERY R D. Limits to relief [J]. Science, 1995, 270(5236): 617-620.
[38] 王德朝. 吉隆盆地构造、环境演化与青藏高原隆升[D]. 北京:北京大学,2008:11. [WANG Dechao. Tectonic and environmental evolution of the Gyirong basin, and its relationship to the uplift of Tibetan plateau [D]. Beijing:Peking University, 2008: 11]
[39] 张进江. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报,2007,26(6):639-649. [ZHANG Jinjiang. A review on the extensional structures in the northern Himalaya and southern Tibet [J]. Geological Bulletin of China, 2007, 26(6): 639-649]
[40] HURTADO J M, HODGES K V, WHIPPLE K X. Neotectonics of the Thakkhola graben and Implications for Recent activity on the South Tibetan Fault System in the Central Nepal Himalaya[J]. Geological Society of America Bulletin, 2001, 113(2): 222-240.
[41] ADAMS A B, WHIPPLE X K, HODGES V K, et al. In situ development of high-elevation, low-relief landscapes via duplex deformation in the Eastern Himalayan hinterland, Bhutan[J]. Journal of Geophysical Research: Earth Surface, 2016, 121: 294-319.
[42] 李吉均,方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报,1998, 43(15):1569-1574. [LI Jijun, FANG Xiaomin. Study on uplift and environmental change of Qinghai-Tibet Plateau [J]. Chinese Science Bulletin, 1998, 43(15): 1569-1574]
[43] 杨人凡. 西藏吉隆盆地冲锥堆积体的成因研究[D]. 成都:成都理工大学,2011:11. [YANG Renfan. Research of chongzhui accumulation body's cause of formation in basin JiLong Tibet [D]. Chengdu: Chengdu University of Technology, 2011: 11]
[44] 朱诚. 西藏吉隆盆地的新构造运动及第四纪冰川[J]. 山地学报,1995,13(4):219-225. [ZHU Cheng. Neotectonism and quaternary glaciation of Gyirong Basin, Xizang [J]. Mountain Research, 1995, 13(4): 219-225]

备注/Memo

备注/Memo:
收稿日期(Received date):2020-03-24; 改回日期(Accepted date):2020-08-26
基金项目(Foundation item):国家自然科学基金项目(1461029); 成都师范学院引进人才专项(YJRC2016-6); 西藏自治区自然科学基金项目(2015ZR-13-66); 四川省教育厅“区域人文资源开发利用研究”创新团队(14TD0039)。[National Natural Science Foundation of China(1461029); Project of Talent Introduction by Chengdu Normal University(YJRC2016-6); Natural Science Foundation of Tibet Autonomous Region(2015ZR-13-66); Innovation Team of “Research on Development and Utilization of Regional Human Resources” of Sichuan Provincial Department of Education(14TD0039)]
*作者简介(Biography):陈露(1980-),女,四川达州人,理学博士,副教授,主要研究方向:第四纪地质学与青藏高原景观地学。[CHEN Lu(1980-),female,born in Dazhou,Sichuan province,Ph. D.,assistant professor, specialized in quaternary geology and landscape geoscience in the Qinghai-Tibet Plateau.] E-mail: 051052@cdnu.edu.cn
更新日期/Last Update: 2020-09-30