[1]谢湘平,王小军,闫春岭.漂木灾害研究现状及研究展望[J].山地学报,2020,(4):552-560.[doi:10.16089/j.cnki.1008-2786.000533]
 XIE Xiangping,WANG Xiaojun,YAN Chunling.A Review of the Research on Woody Debris Related Disaster and Its Prospect[J].Mountain Research,2020,(4):552-560.[doi:10.16089/j.cnki.1008-2786.000533]
点击复制

漂木灾害研究现状及研究展望()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第4期
页码:
552-560
栏目:
山地灾害
出版日期:
2020-09-27

文章信息/Info

Title:
A Review of the Research on Woody Debris Related Disaster and Its Prospect
文章编号:
1008-2786-(2020)4-552-09
作者:
谢湘平王小军 闫春岭
安阳工学院 土木与建筑工程学院,河南 安阳 455000
Author(s):
XIE Xiangping WANG XiaojunYAN Chunling
Department of Civil and Architectural Engineering, An Yang Institute of Technology, Anyang 455000, Henan, China
关键词:
山洪 泥石流 漂木 灾害效应
分类号:
P642; X43
DOI:
10.16089/j.cnki.1008-2786.000533
文献标志码:
A
摘要:
漂木是山地系统中常见的物质组成,在山地系统中发挥着重要的生态功能。随着山地灾害日益加剧,漂木在被山洪、泥石流搬运过程中常造成严重的灾害效应。基于国内外研究成果,文章首先分析了漂木的运动与堆积规律; 在此基础上,从漂木堆积导致的侵蚀作用、雍水作用、溃决作用和漂木冲击作用等四个方面总结了漂木的灾害效应,对漂木灾害效应的评估方法以及常见的漂木灾害减灾措施进行了详细梳理。基于山地灾害防灾减灾需求,分析评价了目前研究存在的问题,提出了应加强基于真实情境的漂木运动堆积规律研究,加强大规模山地灾害条件下漂木灾害效应的研究以及漂木灾害治理过程中去除漂木带来的灾害效应的研究。

参考文献/References:

[1] FAUSTINI J M, JONES J A. Influence of large woody debris on channel morphology and dynamics in steep, boulder-rich mountain streams, western Cascades, Oregon [J]. Geomorphology, 2003, 51(1-3):187-205.
[2] DAVIDSON S L, EATON B C. Modeling channel morphodynamic response to variations in large wood: implications for stream rehabilitation in degraded watersheds [J]. Geomorphology, 2013, 202(457):59-73.
[3] COMITI F, LUCíA A, RICKENMANN D. Large wood recruitment and transport during large floods: a review[J]. Geomorphology, 2016, 269: 23-39.
[4] VAW. Analysis of 2005 flood event: subproject driftwood[R]. Zurich: Swiss Federal Institute of Technology(Rep. 4240), 2008:1-7.
[5] GARCíA-MARTíNEZ R., López J.L. Debris flows of December 1999 in Venezuela [G]// JAKOB M, HUNGR O. Debris-flow hazards and related phenomena. Berlin: Springer, 2005:519-538.
[6] RUIZ VILLANUEVA V, BADOUX A, RICKENMANN D, et al. Impacts of a large flood along a mountain river basin: The importance of channel widening and estimating the large wood budget in the upper Emme River(Switzerland)[J]. Earth Surface Dynamics, 2018, 6(4):1115-1137.
[7] COMITI F, MAO L, PRECISO E, et al. Large wood and flash floods: evidences from the 2007 event in the Davca Basin(Slovenia)[G]// Monitoring, simulation, prevention and remediation of dense and debris flow II. UK:WIT press, 2008: 173-182.
[8] ANA L, FRANCESCO C, MARCO B, et al. Large wood recruitment and transport during a severe flash flood in north-western Italy[M]// LOLLINO G. et al. Engineering geology for society and territory-volume 3. Switzerland:Springer, 2015:159-162.
[9] 高克昌,孟国才,韦方强,等. 德宏“7.5”特大滑坡泥石流灾害分析及其对策[J]. 防灾减灾工程学报,2005,25(3):251-257. [GAO Kechang, MENG Guocai, WEI Fangqiang, et al. Analysis and countermeasure for the large-scale landslide debris flow hazard in DeShong,Yunnan,china[J]. Journal of Disaster Prevention and Mitigation Engineering, 2005,25(3): 251-257]
[10] DOONG D J, CHUANG H C, SHIEH C L, et al. Quantity, distribution, and impacts of coastal driftwood triggered by a typhoon[J]. Marine Pollution Bulletin, 2011, 62(7):1446-1454.
[11] BRAUDRICK C A, GRANT G E. When do logs move in rivers? [J]. Water Resources Research, 2000, 36(36):571-583.
[12] BOCCHIOLA D, RULLI M C, ROSSO R. Flume experiments on wood entrainment in rivers [J]. Advances in Water Resources, 2006, 29(8):1182-1195.
[13] LIENKAEMPER G W, SWANSON F J. Dynamics of large woody debris in old-growth Douglas-fir forests [J]. Canadian Journal of Forest Research.1987,17(2):150-156.
[14] 王道正,陈晓清,赵万玉,等.泥石流中漂木的运动和拦截特征[J].中国水土保持科学,2017,15(6):9-18. [WANG Daozheng, CHEN Xiaoqing, ZHAO Wanyu, et al. Movement and intercept characteristics of driftwood in debris flow [J]. Science of Soil and Water Conservation, 2017, 15(6):9-18]
[15] BRAUDRICK C A, GRANT G E. Transport and deposition of large woody debris in streams: a flume experiment [J]. Geomorphology, 2001, 41(4):263-283.
[16] BOCCHIOLA D, RULLI M C, ROSSO R. Transport of large woody debris in the presence of obstacles[J]. Geomorphology, 2006,76(1):166-178.
[17] ABBE T B, MONTGOMERY D R. Patterns and processes of wood debris accumulation in the Queets river basin, Washington [J]. Geomorphology. 2003,51(1): 81-107.
[18] MAZZORANA B, HüBL J, ZISCHG A, et al. Modelling woody material transport and deposition in alpine rivers[J]. Natural Hazards, 2011, 56(2):425-449.
[19] RUIZ VILLANUEVA V, BLADé CASTELLET E, DíEZ-HERRERO A, et al. Two-dimensional modelling of large wood transport during flash floods[J]. Earth Surface Processes and Landforms, 2014, 39(4):438-449.
[20] MAZZORANA B, RUIZ VILLANUEVA V, MARCHI L. Assessing and mitigating large wood‐related hazards in mountain streams: recent approaches[J]. Journal of Flood Risk Management, 2017:1-16.
[21] RUIZ VILLANUEVA V, BLADé CASTELLET E, SáNCHEZ-JUNY M, et al. Two-dimensional numerical modeling of wood transport [J]. Journal of Hydroinformatics, 2014,16(5): 1077-1096.
[22] MELEASON M A, DAVIES-COLLEY R, WRIGHT-STOW A, et al. Characteristics and geomorphic effect of wood in New Zealand's native forest streams[J]. International Review of Hydrobiology, 2005, 90(5-6):466-485.
[23] LAURSEN E M, TOCH A. Scour around bridge piers and abutments [R]. IOWA: Iowa Highway Research Board, Bulletin NO.4. 1956:28-31.
[24] MELVILLE B W, DONGOL D M. Bridge pier scour with debris accumulation[J]. Journal of Hydraulic Engineering, 1992, 118(9):1306-1310.
[25] MANNERS R B, DOYLE M W, SMALL M J. Structure and hydraulics of natural woody debris jams [J]. Water Resources Research, 2007, 43(6):813-816.
[26] PAGLIARA S, CARNACINA I. Temporal scour evolution at bridge piers: effect of wood debris roughness and porosity [J]. Journal of Hydraulic Research, 2010, 48(1):3-13.
[27] PAGLIARA S, CARNACINA I. Influence of large woody debris on sediment scour at bridge piers[J]. International Journal of Sediment Research, 2011, 26(2):121-136.
[28] DIEHL T H. Potential drifts accumulation at bridges [R/OL]. Virginia: U.S. Geological Survey, Publication No. FHWA-RD-97-028.1997:22-32[2019-06-15]. http://tn.water.usgs.gov/publications/FHWA-RD-97-028/FHWA-RD-97-028.pdf.
[29] LYN D A, COOPER T J, YI Y, et al. Debris accumulation at bridge crossings: laboratory and field studies: JTRP Technical Reports of Joint Transportation Research Program, Publication FHWA/IN/JTRP-2003/10[R/OL]. Indiana: Indiana Department of Transportation & Purdue University,2003:44-48[2019-06-15]. http://docs.lib.purdue.edu/jtrp/48
[30] SCHMOCKER L, HAGER W H. Drift accumulation at river bridges [G]// Dittrich, Koll, Aberle, Geisenhainer(eds), River flow 2010. Bundesanstalt für Wasserbau: Karlsruhe, 2010:713-720.
[31] SCHMOCKER L, HAGER W H, ASCE F. Probability of drift blockage at bridge decks [J]. Journal of Hydraulic Engineering, 2011, 137(4):470-479.
[32] RIMBÖCK A, STROBL T. Loads on rope net constructions for woody debris entrapment in torrents[C/OL]// Matsumoto: INTERPRAEVENT,2002: 797-807[2019-06-15]. http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2002_2_797.pdf
[33] SCHMOCKER L, HAGER W H. Scale modeling of wooden debris accumulation at a debris rack [J]. Journal of Hydraulic Engineering, 2013,139(8): 827-836.
[34] HARTLIEB A. Decisive parameters for backwater effects caused by floating debris jams [J]. Open Journal of Fluid Dynamics, 2017,7(4): 475-484.
[35] SCHALKO I, SCHMOCKER L, WEITBRECHT V, et al. Backwater rise due to large wood accumulation [J]. Journal of Hydraulic Engineering, 2018, 144(9):04018056.
[36] SCHALKO I, SCHMOCKER L, WEITBRECHT V, et al. Backwater rise due to large wood accumulations: effect of organic fine material[C]// EGU General Assembly, Vienna, Austria, 2017,19: EGU2017-6646
[37] BRUSCHIN J, BAUER S, DELLEY P, et al. The overtopping of the Palagnedra dam[J]. International Water Power & Dam Construction, 1982, 34(1), 13-19.
[38] HASEGAWA Y, SUGIURA N, SHOUZAWA M, et al. An investigation of measures against woody debris through hydraulic model experiments [C/OL]// Taipei: INTERPREAEVENT, Taipei, 2010:135-143[2019-06-15]. http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2010_135.pdf
[39] ROBERT B, STEVEN F D. Maximum impact force of woody debris on floodplain structures [J]. Journal of Hydraulic Engineering,2004,130(2):112-120.
[40] 傅宗甫,刘明明,吕家才.漂木撞击力量测方法及撞击力特性研究[J].水利水电科技进展,2001(3):33-34,63. [FU Zongpu, LIU Mingming, LYU Jiacai. Study on measurement and characteristics of percussive force of float timber[J]. Advances in Science and Technology of Water Resource,2001(3):33-34,63]
[41] RICKENMANN D. Driftwood and flood [J]. Wasser Energie Luft, 1997, 89(5/6): 115 -119(in German).
[42] UCHIOGI T, SHIMA J, TAJIMA H, et al. Design methods for wood-debris entrapment[C/OL]// Garmisch Partenkirchen:INTERPRAEVENT, 1996, 5: 279-288[2019-06-15]. http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/1996_5_279.pdf.
[43] PETRASCHEK A, KIENHOLZ H. Hazard assessment and mapping of mountain risks in Switzerland[G]// RICKENMANN D, CHEN C L(eds), Debris-flow hazard mitigation: mechanics, prediction and assessment, Rotterdam: Millpress, 2003:25-39.
[44] MAZZORANA B, ZISCHG A, LARGIADER A, et al. Hazard index maps for woody material recruitment and transport in alpine catchments [J]. Natural Hazards and Earth System Sciences, 2009, 9(1):197-209.
[45] MAZZORANA B, COMITI F, SCHERER C, et al. Developing consistent scenarios to assess flood hazards in mountain streams[J]. Journal of Environmental Management, 2012, 94(1):112-124.
[46] RUDOLF-MIKLAU F, HüBL J. Managing risks related to drift wood(woody debris)[C/OL]// Taipei: INTERPRAEVENT 2010: 868-878[2019-06-15]. http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2010_868.pdf
[47] BRADLEY J B, RICHARDS D L, BAHNER C D. Debris control structures-evaluation and countermeasures[R]. Virginia: National Highway Institute, Rep. FHWA-IF-04-016, 2005: 99-129.
[48] COMITI F, AGOSTINO V D, MOSER M, et al. Preventing wood-related hazards in mountain basins: from wood load estimation to designing retention structures[C/OL]// Grenoble: INTERPR-AEVENT, 2012: 651-662[2019-0615]. http://interpraevent.at/palm-cms/upload_files/Publikationen/Tagungs-beitraege/2012_EA_84.pdf
[49] SHIBUYA H, KATSUKI S, OHSUMI H, et al. Trap performance analysis of woody debris capturing structure by distinct element method using cylindrical element[J], Journal of Japan Society of Civil Engineers, 2011, 67: 113-132.
[50] ONO G, MIZUYAMA T, MATSUMURA K. Current practices in the design and evaluation of steel Sabo facilities in Japan [C/OL]// Riva del Garda: INTERPRAEVENT, 2004: 253-264[2019-06-15]. http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2004_3_VII-253.pdf
[51] MIZUYAMA T. Structural countermeasures for debris flow disasters[J]. International Journal of Erosion Control Engineering,2008,1(2):38-43.
[52] 陈晓清,崔鹏,韦方强. 良好植被区泥石流防治初探[J]. 山地学报,2006,24(03):333-339.[CHEN Xiaoqing, CUI Peng, WEI Fangqiang. Study of control debris flow in high-covered vegetation region [J]. Mountain Research, 2006, 24(3):333-339]
[53] 崔鹏,陈晓清,柳素清,等. 风景区泥石流防治特点与技术[J]. 地学前缘,2007,14(06):172-180. [CUI Peng, CHEN Xiaoqing, LIU Suqing, et al. Techniques of debris flow prevention in national parks[J]. Earth Science Frontiers, 2007, 14(6):172-180]
[54] SCHMOCKER L, WEITBRECHT V. Driftwood: risk analysis and engineering measures [J]. Journal of Hydraulic Engineering, 2013, 139(7): 683-695.
[55] XIE T, YANG H, WEI F, et al. A new water-sediment separation structure for debris flow defense and its model test[J]. Bulletin of Engineering Geology and the Environment, 2014, 73(4):947-958.
[56] XIE X P, WEI F Q, YANG H J, et al. Experimental study on large wood filtration performance by herringbone water-sediment separation structure [J]. Journal of Mountain Science, 2017, 14(2):269-281.
[57] STEEB N, RICKENMANN D, BADOUX A, et al. Large wood recruitment processes and transported volumes in Swiss mountain streams during the extreme flood of August 2005[J]. Geomorphology, 2017, 279:112-127.
[58] ERSKINE W D, WEBB A A. Desnagging to resnagging: new directions in river rehabilitation in Southeastern Australia [J]. River Research and Applications, 2003, 19(3):233-249.
[59] COLLINS B D, MONTGOMERY D R, FETHERSTON K L, et al. The floodplain large-wood cycle hypothesis: A mechanism for the physical and biotic structuring of temperate forested alluvial valleys in the North Pacific coastal ecoregion[J]. Geomorphology, 2012, 139-140:0-470.
[60] WOHL E, BLEDSOE B P, FAUSCH K D, et al. Management of large wood in streams: an overview and proposed framework for hazard evaluation[J]. Journal of the American Water Resources Association, 2016, 52(2):315-335.
[61] REIFELDS I, RUTHERFURD I, BISHOP P. History and effects of channelization on the Latrobe River, Victoria[J]. Australian Geographical Studies, 1995, 33: 60-76.
[62] ERSKINE W D, SAYNOR M J. Effects of catastrophic floods on sediment yields in southeastern Australia[G]// WALLING D E, WEBB B W(eds), Erosion and sediment yield: global and regional perspectives, Exeter: International Association of Hydrological Sciences, 1996, 236: 381-388.

相似文献/References:

[1]谢湘平,韦方强,谢涛,等.山洪中漂木在拦砂坝前堵塞堆积实验[J].山地学报,2014,(02):249.
 XIE Xiangping,WEI Fangqiang,XIE Tao,et al.Experiment on the Clogging and Deposition of Woody Debris Flowing with Torrents in Front of Debris Dams[J].Mountain Research,2014,(4):249.
[2]谢洪,钟敦伦,王士革,等.1995年康定城区洪灾成因分析[J].山地学报,1997,(02):129.
[3]陶云,唐川,寸灿琼,等.2004-07-05云南德宏州山洪泥石流气象成因分析[J].山地学报,2005,(01):53.
[4]谢湘平,苏鹏程,王小军,等.工程弃渣泥石流易发性评估方法[J].山地学报,2016,(02):216.[doi:10.16089/j.cnki.1008-2786.000121]
 XIE Xiangping,SU Pengcheng,WANG Xiaojun,et al.Occurrence Probability of Channel Waste-slag Debris Flow Assessment[J].Mountain Research,2016,(4):216.[doi:10.16089/j.cnki.1008-2786.000121]
[5]陈 剑,黎 艳,许 冲.金沙江干热河谷区泥石流易发性评价模型及应用[J].山地学报,2016,(04):460.[doi:10.16089/j.cnki.1008-2786.000151]
 CHEN Jian,LI Yan,XU Chong.Susceptibility Assessment Model of Debris Flows in the Dry-hot Valley of the Jinsha River and Its Application[J].Mountain Research,2016,(4):460.[doi:10.16089/j.cnki.1008-2786.000151]
[6]邹 强,唐建喜,李淑松,等.基于水文响应单元的泥石流灾害易发性分区方法[J].山地学报,2017,(04):496.[doi:10.16089/j.cnki.1008-2786.000247]
 ZOU Qiang,*,TANG jianxi,et al.Susceptibility Assessment Method of Debris Flows Based on Hydrological Response Unit[J].Mountain Research,2017,(4):496.[doi:10.16089/j.cnki.1008-2786.000247]
[7]廖丽萍,朱颖彦*,杨志全,等.震区砾石土泥石流起动临界状态与力学性状[J].山地学报,2017,(04):506.[doi:10.16089/j.cnki.1008-2786.000248]
 LIAO Liping,,et al.The Mechanical Property of Gravel Soil in Seismic Area and Its Critical State in Initiating Debris Flow[J].Mountain Research,2017,(4):506.[doi:10.16089/j.cnki.1008-2786.000248]
[8]方迎潮,王道杰*,何松膛,等.云南东川蒋家沟泥石流2003-2014年冲淤演变特征[J].山地学报,2018,(06):907.[doi:10.16089/j.cnki.1008-2786.000386]
 FANG Yingchao,WANG Daojie*,HE Songtang,et al.Characteristics of Debris Flow Erosion and Deposition at Jiangjia Gully, Dongchuan, Yunnan Province, China for 2003-2014[J].Mountain Research,2018,(4):907.[doi:10.16089/j.cnki.1008-2786.000386]
[9]陈宁生*,佘德彬.基于弃渣综合利用的矿山泥石流灾害防治新模式--以冕宁盐井沟泸沽铁矿为例[J].山地学报,2019,(01):78.[doi:10.16089/j.cnki.1008-2786.000401]
 CHEN Ningsheng,SHE Debin.A New Approach to Debris Flow Disaster Control Based on Comprehensive Utilization of Waste Slag—A Case Study of Lugu Iron Mine at the Yanjing Valley of Mianning County, Sichuan, China[J].Mountain Research,2019,(4):78.[doi:10.16089/j.cnki.1008-2786.000401]
[10]王凤娘,贺 拿,陈 容,等.九寨沟县西番沟泥石流调查[J].山地学报,2019,(04):622.[doi:10.16089/j.cnki.1008-2786.000453]
 WANG Fengniang,HE Na,CHEN Rong,et al.Investigation of Debris Flow in Xifangou, Jiuzhaigou County, China[J].Mountain Research,2019,(4):622.[doi:10.16089/j.cnki.1008-2786.000453]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-06-15; 改回日期(Accepted date):2020-05-14
基金项目(Foundation item):国家自然科学基金项目(41907258); 安阳工学院博士科研启动项目(BSJ2019011)。[National Natural Science Foundation of China(41907258); Doctoral Research Start-up Fund of Anyang Institute of Technology(BSJ2019011)
作者简介(Biography):谢湘平(1987-),女,博士,讲师,主要研究方向:山地灾害防灾减灾。[XIE Xiangping, female, Ph.D., lecturer, research on theory and geohazard prevention and mitigation.] E-mail:xxp_imde@163.com
更新日期/Last Update: 2020-07-30