[1]廖佩琳,高全洲*,李 琦,等.流域源区溪流CO2的来源与扩散过程研究综述[J].山地学报,2020,(4):507-519.[doi:10.16089/j.cnki.1008-2786.000529]
 LIAO Peilin,GAO Quanzhou,*,et al.Review of the Research on Sources and Diffusion Processes of CO2 in Headwater Streams[J].Mountain Research,2020,(4):507-519.[doi:10.16089/j.cnki.1008-2786.000529]
点击复制

流域源区溪流CO2的来源与扩散过程研究综述()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第4期
页码:
507-519
栏目:
山地环境
出版日期:
2020-09-27

文章信息/Info

Title:
Review of the Research on Sources and Diffusion Processes of CO2 in Headwater Streams
文章编号:
1008-2786-(2020)4-507-13
作者:
廖佩琳1高全洲123*李 琦1杨茜茜1孙渝雯1
1.中山大学 地理科学与规划学院,广东省城市化与地理环境空间模拟重点实验室, 广州 510275; 2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519080; 3.广东省地质过程与矿产资源探查重点实验室, 广州 510275
Author(s):
LIAO Peilin1GAO Quanzhou1 2 3*LI Qi1YANG Qianqian1SUN Yuwen1
1. Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China; 2. Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai 519080, Guangdong, China; 3. Guangdong Provincial Key Laboratory of Mineral Resources & Geological Processes, Guangzhou 510275, China
关键词:
源区溪流 地下水 湍流 CO2扩散 碳循环
分类号:
P592
DOI:
10.16089/j.cnki.1008-2786.000529
文献标志码:
A
摘要:
江河水系的源头多由规模小但数量多的溪流构成。溪流是源区生态系统向下游进行碳输出的开端,同时也存在水体CO2向大气扩散的过程。溪流CO2扩散通量(FCO2)取决于水体二氧化碳分压(pCO2)、水-气界面因湍流而产生的CO2扩散速率(kCO2)及溪流水域面积等方面,可以直接测量也可以通过经验公式及模型估算。溪流pCO2受外源输入和内源产生两个过程的制约。外源CO2是由壤中流和地下水向溪流注入的溶解无机碳(DIC)转化而来,内源主要指水体有机质分解产生的CO2。水-气界面kCO2主要受到与河床坡度、粗糙度及流量变化密切相关的水流湍流程度的影响。源区溪流FCO2在时间上表现为暖湿季节>干冷季节、夜间>白天、洪水期>非洪水期; 全球空间尺度呈现自热带向寒温带递减; 特定溪流内自地下水排泄区向下游递减。目前,关于源区溪流CO2来源与扩散的研究逐渐增多,但是在溪流CO2各种内外来源贡献量与贡献比例的估算、源区生态系统中各地理要素对溪流外源碳输入过程的控制、溪流水-气界面FCO2估算模型及山区溪流kCO2和CO2扩散过程等方面还有待深入研究。

参考文献/References:

[1] DOWNING J A, COLE J J, DUARTE C M, et al. Global abundance and size distribution of streams and rivers [J]. Inland Waters, 2012, 2(4): 229-236.
[2] STRAHLER A N. Quantitative analysis of watershed geomorphology [J]. Transactions, American Geophysical Union, 1957, 38(6): 913-920.
[3] BUTMAN D, RAYMOND P A. Significant efflux of carbon dioxide from streams and rivers in the United States [J]. Nature Geoscience, 2011, 4(12): 839-842.
[4] HOTCHKISS E R, HALL JR R O, SPONSELLER R A, et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers [J]. Nature Geoscience, 2015, 8(9): 696-699.
[5] BEAULIEU J J, SHUSTER W D, REBHOLZ J A. Controls on gas transfer velocities in a large river [J]. Journal of Geophysical Research: Biogeosciences, 2012, 117: G02007.
[6] RAYMOND P A, HARTMANN J, LAUERWALD R, et al. Global carbon dioxide emissions from inland waters [J]. Nature, 2013, 503(7476): 355-359.
[7] RAYMOND P A, ZAPPA C J, BUTMAN D, et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers [J]. Limnology and Oceanography: Fluids and Environments, 2012, 2(1): 41-53.
[8] LE QUÉRÉ C, PETERS G P, ANDRES R J, et al. Global carbon budget 2013 [J]. Earth System Science Data, 2014, 6(1): 235-263.
[9] AUFDENKAMPE A K, MAYORGA E, RAYMOND P A, et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere [J]. Frontiers in Ecology and the Environment, 2011, 9(1): 53-60.
[10] KOPRIVNJAK J-F, DILLON P J, MOLOT L A. Importance of CO2 evasion from small boreal streams [J]. Global Biogeochemical Cycles, 2010, 24(4): GB4003.
[11] ROBERTS B J, MULHOLLAND P J, HILL W R. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream [J]. Ecosystems, 2007, 10(4): 588-606.
[12] PETER H, SINGER G A, PREILER C, et al. Scales and drivers of temporal pCO2 dynamics in an Alpine stream [J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(6): 1078-1091.
[13] WALLIN M B, ÖQUIST M G, BUFFAM I, et al. Spatiotemporal variability of the gas transfer coefficient(KCO2)in boreal streams: Implications for large scale estimates of CO2 evasion [J]. Global Biogeochemical Cycles, 2011, 25: GB3025.
[14] RAWITCH M, MACPHERSON G L, BROOKFIELD A. Exploring methods of measuring CO2 degassing in headwater streams [J]. Sustainable Water Resources Management, 2019, 5(4): 1765-1779.
[15] LEITH F I, DINSMORE K J, WALLIN M B, et al. Carbon dioxide transport across the hillslope-riparian-stream continuum in a boreal headwater catchment [J]. Biogeosciences, 2015, 12(6): 1881-1892.
[16] LONG H, VIHERMAA L, WALDRON S, et al. Hydraulics are a first-order control on CO2 efflux from fluvial systems [J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(10): 1912-1922.
[17] BASTVIKEN D, SUNDGREN I, NATCHIMUTHU S, et al. Technical Note: Cost-efficient approaches to measure carbon dioxide(CO2)fluxes and concentrations in terrestrial and aquatic environments using mini loggers [J]. Biogeosciences, 2015, 12(12): 3849-3859.
[18] HALL JR R O, TANK J L, BAKER M A, et al. Metabolism, Gas exchange, and carbon spiraling in rivers [J]. Ecosystems, 2016, 19(1): 73-86.
[19] 罗佳宸,倪茂飞,李思悦. 重庆西部山区典型湖泊水-气界面CO2交换通量及其影响因素 [J]. 环境科学,2019,40(1):192-199. [LUO Jiachen, NI Maofei, LI Siyue. Water-Air Interface CO2 exchange flux of typical lakes in a mountainous area of the Western Chongqing and their influencing factors [J]. Environmental Science, 2019, 40(1): 192-199]
[20] 张永领,杨小林,张东. 小浪底水库影响下的黄河花园口站和小浪底站pCO2特征及扩散通量 [J]. 环境科学,2015,36(1):40-48. [ZHANG Yongling, YANG Xiaolin, ZHANG Dong. Partial pressure of CO2 and CO2 degassing fluxes of Huayuankou and Xiaolangdi Station affected by Xiaolangdi Reservoir [J]. Environmental Science, 2015, 36(1): 40-48]
[21] 祁第,翟惟东,陈能汪,等. 九龙江的碳酸盐体系、CO2分压及其调控 [J]. 地球与环境,2014,42(3):286-296. [QI Di, ZHAI Weidong, CHEN Nengwang, et al. Carbonate system and partial pressure of CO2 in the subtropical Jiulongjiang River, China: a discussion on controlling mechanisms [J]. Earth and Environment, 2014, 42(3): 286-296]
[22] 张龙军,徐雪梅,温志超. 秋季黄河pCO2控制因素及水-气界面通量 [J]. 水科学进展,2009,20(2):227-235. [ZHANG Longjun, XU Xuemei, WEN Zhichao. Control factors of pCO2 and CO2 degassing fluxes from the Yellow River in autumn [J]. Advances in Water Science, 2009, 20(2): 227-235]
[23] 钱娟婷,吴起鑫,安艳玲,等. 三岔河pCO2特征及水-气界面通量分析 [J]. 中国环境科学,2017,37(6):2263-2269. [QIAN Juanting, WU Qixin, AN Yanling, et al. Partial pressure of CO2 and CO2 outgassing fluxes of Sancha River [J]. China Environmental Science, 2017, 37(6): 2263-2269]
[24] 李丽,蒲俊兵,李建鸿,等. 亚热带典型岩溶溪流水气界面CO2交换通量变化过程及其环境影响 [J]. 环境科学,2016,37(7):2487-2495. [LI Li, PU Junbing, LI Jianhong, et al. Variations of CO2 exchange fluxes across water-air interface and environmental meaning in a surface stream in subtropical karst area, SW China [J]. Environmental Science, 2016, 37(7): 2487-2495]
[25] 莫雪,蒲俊兵,袁道先,等. 亚热带典型岩溶区地表溪流溶解无机碳昼夜变化特征及其影响因素 [J]. 第四纪研究,2014,34(4):873-880. [MO Xue, PU Junbing, YUAN Daoxian, et al. Diel Variation and influence factors of dissolved inorganic carbon in surface creek fed by a karst subterranean stream in subtropical area, SW China [J]. Quaternary Sciences, 2014, 34(4): 873-880]
[26] MACDONALD M J, MINOR E C. Photochemical degradation of dissolved organic matter from streams in the western Lake Superior watershed [J]. Aquatic Sciences, 2013, 75(4): 509-522.
[27] 陶澍,梁涛,徐尚平,等. 伊春河河水溶解态有机碳含量和输出通量的时空变化 [J]. 地理学报,1997,52(3):64-71. [TAO Shu, LIANG Tao, XU Shangping, et al. Temporal and spatial variation of dissolved organic carbon content and its flux in Yichun River [J]. Acta Geographica Sinica, 1997, 52(3): 64-71]
[28] GAO Tanguang, KANG Shichang, CHEN Rensheng, et al. Riverine dissolved organic carbon and its optical properties in a permafrost region of the Upper Heihe River basin in the Northern Tibetan Plateau [J]. Science of The Total Environment, 2019, 686: 370-381.
[29] LI Xiangying, DING Yongjian, XU Jianzhong, et al. Importance of mountain glaciers as a source of dissolved organic carbon [J]. Journal of Geophysical Research: Earth Surface, 2018, 123(9): 2123-2134.
[30] MA Xiaoliang, LIU Guimin, WU Xiaodong, et al. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau [J]. Science of The Total Environment, 2018, 630: 314-322.
[31] WINTERDAHL M, WALLIN M B, KARLSEN R H, et al. Decoupling of carbon dioxide and dissolved organic carbon in boreal headwater streams [J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(10): 2630-2651.
[32] AMADO A M, MEIRELLES-PEREIRA F, VIDAL L O, et al. Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones [J]. Frontiers in Microbiology, 2013, 4: 167.
[33] WU Zhipeng, WU Weidong, LIN Chen, et al. Deciphering the origins, composition and microbial fate of dissolved organic matter in agro-urban headwater streams [J]. Science of the Total Environment, 2019, 659: 1484-1495.
[34] DUVERT C, BUTMAN D E, MARX A, et al. CO2 evasion along streams driven by groundwater inputs and geomorphic controls [J]. Nature Geoscience, 2018, 11(11): 813-818.
[35] MARX A, DUSEK J, JANKOVEC J, et al. A review of CO2 and associated carbon dynamics in headwater streams: A global perspective [J]. Reviews of Geophysics, 2017, 55(2): 560-585.
[36] BOND-LAMBERTY B, THOMSON A. Temperature-associated increases in the global soil respiration record [J]. Nature, 2010, 464(7288): 579-582.
[37] RAICH J W, POTTER C S. Global patterns of carbon dioxide emissions from soils [J]. Global Biogeochemical Cycles, 1995, 9(1): 23-36.
[38] JOHNSON M S, LEHMANN J, RIHA S J, et al. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration [J]. Geophysical Research Letters, 2008, 35(17): L17401.
[39] DAVIDSON E A, VERCHOT L V, CATTÂNIO J H, et al. Effects of soil water content on soil respiration in forests and cattle pastures of Eastern Amazonia [J]. Biogeochemistry, 2000, 48(1): 53-69.
[40] ÖQUIST M G, WALLIN M, SEIBERT J, et al. Dissolved inorganic carbon export across the soil/stream interface and its fate in a boreal headwater stream [J]. Environmental Science & Technology, 2009, 43(19): 7364-7369.
[41] DINSMORE K J, BILLETT M F, SKIBA U M, et al. Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment [J]. Global Change Biology, 2010, 16(10): 2750-2762.
[42] DUVERT C, BOSSA M, TYLER K J, et al. Groundwater-derived DIC and carbonate buffering enhance fluvial CO2 evasion in two Australian tropical rivers [J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(2): 312-327.
[43] OVIEDO-VARGAS D, DIERICK D, GENEREUX D P, et al. Chamber measurements of high CO2 emissions from a rainforest stream receiving old C-rich regional groundwater [J]. Biogeochemistry, 2016, 130(1/2): 69-83.
[44] 闫志为,韦复才. 地下水中CO2的成因综述 [J]. 中国岩溶,2003,22(2):118-123. [YAN Zhiwei, WEI Fucai. Summary on the genesis of CO2 in groundwater [J]. Garsologica Sinica, 2003, 22(2): 118-123]
[45] 刘再华,张美良,游省易,等. 碳酸钙沉积溪流中地球化学指标的空间分布和日变化特征:以云南白水台为例 [J]. 地球化学,2004,33(3):269-278. [LIU Zaihua, ZHANG Meiliang,YOU Shengyi, et al. Spatial and diurnal variations of geochemical indicators in a calcite-precipitating stream-Case study of Baishuitai, Yunnan [J]. Geochimica, 2004, 33(3): 269-278]
[46] HORGBY Å, SEGATTO P L, BERTUZZO E, et al. Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world's mountains [J]. Nature Communications, 2019, 10: 4888.
[47] 周小萍,蓝家程,张笑微,等. 岩溶溪流的脱气作用及碳酸钙沉积——以重庆市南川区柏树湾泉溪流为例 [J]. 沉积学报, 2013,31(6):1014-1021. [ZHOU Xiaoping, LAN Jiacheng, ZHANG Xiaowei, et al. CO2 outgassing and precipitation of calcium carbonate in a Karst Stream: A case study of Baishuwan Spring in Nanchuan, Chongqing [J] Acta Sedimentologica Sinica, 2013, 31(6): 1014-1021.]
[48] CAMPEAU A, WALLIN M B, GIESLER R, et al. Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes [J]. Scientific Reports, 2017, 7(1): 9158.
[49] ALIN S R, RASERA M F F L, SALIMON C I, et al. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets [J]. Journal of Geophysical Research: Biogeosciences, 2011, 116: G01009.
[50] RAN Lishan, LI Lingyu, TIAN Mingyang, et al. Riverine CO2 emissions in the Wuding River catchment on the Loess Plateau: Environmental controls and dam impoundment impact [J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(6): 1439-1455.
[51] MAURICE L, RAWLINS B G, FARR G, et al. The influence of flow and bed slope on gas transfer in steep streams and their implications for evasion of CO2 [J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(11): 2862-2875.
[52] DEMARS B O L, MANSON J R. Temperature dependence of stream aeration coefficients and the effect of water turbulence: A critical review [J]. Water Research, 2013, 47(1): 1-15.
[53] COLE J J, PRAIRIE Y T, CARACO N F, et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget [J]. Ecosystems, 2007, 10(1): 172-185.
[54] LORKE A, BODMER P, NOSS C, et al. Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters [J]. Biogeosciences, 2015, 12(23): 7013-7024.
[55] PODGRAJSEK E, SAHLÉE E, BASTVIKEN D, et al. Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes [J]. Biogeosciences, 2014, 11(15): 4225-4233.
[56] JONSSON A, ÅBERG J, LINDROTH A, et al. Gas transfer rate and CO2 flux between an unproductive lake and the atmosphere in northern Sweden [J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G4): G04006.
[57] VACHON D, PRAIRIE Y T, COLE J J. The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange [J]. Limnology and Oceanography, 2010, 55(4): 1723-1732.
[58] CHUNG S, PARK H, YOO J. Variability of pCO2 in surface waters and development of prediction model [J]. Science of the Total Environment, 2018, 622-623: 1109-1117.
[59] HUNT C W, SALISBURY J E, VANDEMARK D. Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in New England and New Brunswick rivers [J]. Biogeosciences, 2011, 8(10): 3069-3076.
[60] ABRIL G, BOUILLON S, DARCHAMBEAU F, et al. Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters [J]. Biogeosciences, 2015, 12(1): 67-78.
[61] YOON T K, JIN H, OH N H, et al. Technical note: Assessing gas equilibration systems for continuous pCO2 measurements in inland waters [J]. Biogeosciences, 2016, 13(13): 3915-3930.
[62] JOHNSON M S, BILLETT M F, DINSMORE K J, et al. Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems-method and applications [J]. Ecohydrology, 2010, 3(1): 68-78.
[63] WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean [J]. Journal of Geophysical Research, 1992, 97(C5): 7373-7382.
[64] COLE J J, CARACO N F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6 [J]. Limnology and Oceanography, 1998, 43(4): 647-656.
[65] ULSETH A J, HALL JR R O, CANADELL M B, et al. Distinct air-water gas exchange regimes in low-and high-energy streams [J]. Nature Geoscience, 2019, 12(4): 259-263.
[66] HALL JR R O, ULSETH A J. Gas exchange in streams and rivers [J]. WIREs Water, 2020, 7(1): e1391.
[67] MARX A, CONRAD M, AIZINGER V, et al. Groundwater data improve modelling of headwater stream CO2 outgassing with a stable DIC isotope approach [J]. Biogeosciences, 2018, 15(10): 3093-3106.
[68] POLSENAERE P, ABRIL G. Modelling CO2 degassing from small acidic rivers using water pCO2, DIC and δ13C-DIC data [J]. Geochimica et Cosmochimica Acta, 2012, 91: 220-239.
[69] DEIRMENDJIAN L, ABRIL G. Carbon dioxide degassing at the groundwater-stream-atmosphere interface: isotopic equilibration and hydrological mass balance in a sandy watershed [J]. Journal of Hydrology, 2018, 558: 129-143.
[70] CRAWFORD J T, DORNBLASER M M, STANLEY E H, et al. Source limitation of carbon gas emissions in high-elevation mountain streams and lakes [J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(5): 952-964.
[71] BIANCHI T S, GARCIA-TIGREROS F, YVON-LEWIS S A, et al. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event [J]. Geophysical Research Letters, 2013, 40(1): 116-122.
[72] AMARAL-ZETTLER L A, ROCCA J D, LAMONTAGNE M G, et al. Changes in microbial community structure in the wake of Hurricanes Katrina and Rita [J]. Environmental Science & Technology, 2008, 42(24): 9072-9078.
[73] YAO Guanrong, GAO Quanzhou, WANG Zhengang, et al. Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China [J]. Science of the Total Environment, 2007, 376(1-3): 255-266.
[74] KHADKA M B, MARTIN J B, JIN J. Transport of dissolved carbon and CO2 degassing from a river system in a mixed silicate and carbonate catchment [J]. Journal of Hydrology, 2014, 513: 391-402.
[75] LAUERWALD R, LARUELLE G G, HARTMANN J, et al. Spatial patterns in CO2 evasion from the global river network [J]. Global Biogeochemical Cycles, 2015, 29(5): 534-554.
[76] BROOK G A, FOLKOFF M E, BOX E O. A world model of soil carbon dioxide [J]. Earth Surface Processes and Landforms, 1983, 8(1): 79-88.
[77] MÜLLER D, WARNEKE T, RIXEN T, et al. Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river [J]. Biogeosciences, 2015, 12(20): 5967-5979.
[78] WIT F, MÜLLER D, BAUM A, et al. The impact of disturbed peatlands on river outgassing in Southeast Asia [J]. Nature Communications, 2015, 6: 10155.
[79] PU Junbing, LI Jianhong, ZHANG Tao, et al. High spatial and seasonal heterogeneity of pCO2 and CO2 emissions in a karst groundwater-stream continuum, southern China [J]. Environmental Science and Pollution Research, 2019, 26(25): 25733-25748.
[80] JONSSON A, ALGESTEN G, BERGSTRÖM A K, et al. Integrating aquatic carbon fluxes in a boreal catchment carbon budget [J]. Journal of Hydrology, 2007, 334(1/2): 141-150.
[81] TEODORU C R, DEL GIORGIO P A, PRAIRIE Y T, et al. Patterns in pCO2 in boreal streams and rivers of northern Quebec, Canada [J]. Global Biogeochemical Cycles, 2009, 23(2): GB2012.
[82] WALLIN M B, GRABS T, BUFFAM I, et al. Evasion of CO2 from streams-The dominant component of the carbon export through the aquatic conduit in a boreal landscape [J]. Global Change Biology, 2013, 19(3): 785-797.
[83] CRAWFORD J T, LOTTIG N R, STANLEY E H, et al. CO2 and CH4 emissions from streams in a lake-rich landscape: Patterns, controls, and regional significance [J]. Global Biogeochemical Cycles, 2014, 28(3): 197-210.
[84] HOPE D, PALMER S M, BILLETT M F, et al. Variations in dissolved CO2 and CH4 in a first-order stream and catchment: an investigation of soil-stream linkages [J]. Hydrological Processes, 2004, 18(17): 3255-3275.
[85] VIVIROLI D, DÜRR H H, MESSERLI B, et al. Mountains of the world, water towers for humanity: Typology, mapping, and global significance [J]. Water Resources Research, 2007, 43(7): W07447.

备注/Memo

备注/Memo:
收稿日期(Received date):2020-05-03; 改回日期(Accepted date): 2020-07-28
基金项目(Foundation item):国家自然科学基金项目(41871014)。 [National Natural Science Foundation of China( 41871014)]
作者简介(Biography):廖佩琳(1996-),女,广东始兴人,硕士研究生,主要研究方向:河流碳循环与全球变化。 [LIAO Peilin(1996-), female, born in Shixing, Guangdong province, M. Sc. candidate, research on riverine carbon cycle and global change] E-mail: liaoplin@mail2.sysu.edu.cn
*通讯作者(Corresponding author):高全洲(1965-),男,安徽太和人,博士,教授,主要研究方向:河流碳循环与全球变化。 [GAO Quanzhou(1965-), male, born in Taihe, Anhui province, Ph.D., professor, specialized in riverine carbon cycle and global change] E-mail: eesgqz@mail.sysu.edu.cn
更新日期/Last Update: 2020-07-30