[1]张志东,樊晓一*,姜元俊.岩土体颗粒级配对滑坡碎屑流冲击力力链特征的影响[J].山地学报,2020,(3):402-415.[doi:10.16089/j.cnki.1008-2786.000520]
 ZHANG Zhidong,FAN Xiaoyi*,JIANG Yuanjun.Effect of Granularity of Rock and Soil Mass on Regularity of Impact Force Chain in a Fluidized Landslide[J].Mountain Research,2020,(3):402-415.[doi:10.16089/j.cnki.1008-2786.000520]
点击复制

岩土体颗粒级配对滑坡碎屑流冲击力力链特征的影响()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第3期
页码:
402-415
栏目:
山地灾害
出版日期:
2020-07-20

文章信息/Info

Title:
Effect of Granularity of Rock and Soil Mass on Regularity of Impact Force Chain in a Fluidized Landslide
文章编号:
1008-2786-(2020)3-402-14
作者:
张志东1樊晓一1*姜元俊2
1. 西南科技大学 土木工程与建筑学院,四川 绵阳 621010; 2. 中国科学院、水利部 成都山地灾害与环境研究所,成都 610041
Author(s):
ZHANG Zhidong1FAN Xiaoyi1*JIANG Yuanjun2
1. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010,Sichuan, China; 2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041,China
关键词:
冲击力力链 配位数 不均匀系数 颗粒级配 PFC2D
Keywords:
impact force chain coordination number non-uniformity coefficient particle gradation PFC2D
分类号:
P 642.22
DOI:
10.16089/j.cnki.1008-2786.000520
文献标志码:
A
摘要:
冲击力力链特征反映了碎屑流颗粒间的接触关系,为滑坡碎屑流冲击力特性的研究提供了一个新的理论方法。以物理模型实验数据为依据,借助离散元模拟软件PFC2D,探究不同岩土体颗粒级配条件下,力链配位数、超强力链、强力链、弱力链占比和强弱力链分布位置的相关特性。结果表明,碎屑流在运动过程中,力链配位数和强、超强力链占比会经历一个先波动减小再增加最后保持稳定的过程,并且力链配位数与颗粒的平均速度呈负相关关系; 岩土体颗粒级配中的不均匀系数Cu是影响力链配位数、超强力链、强力链、弱力链占比的主要因素; 在碎屑流冲击挡墙过程中,强、超强力链主要集中于底部区域,并且随着粗大颗粒含量的增加,超强力链配位数峰值的作用位置逐渐升高。
Abstract:
The characteristics of impact force chain reflect the contact relationship between debris flow particles, which provides a new theoretical method for the study of characteristics of the impact force of landslide debris flow. Based on experimental data of physical model, and assisted with discrete element simulation software PFC2D, it explored the relevant characteristics of position distribution of force chain coordination, super-strong force chain, strong force chain, weak force chain and strong and weak force chain under different grading conditions of rock and soil. The results suggested that during the movement of debris flow, the force-chain coordination number, the ratio of strong and super-strength chains underwent a process of fluctuated reduction and then increased to a final stable stage, and the force chain coordination number had a negative correlation with average velocity of particles; the uneven coefficient Cu in the rock and soil grain composition was major factor affecting coordination number of the force chain, the super-strong force chain, the strong force chain, and the weak force chain; in process of debris flow impacting retaining wall, the strong and super-strong force chains mainly happened in the bottom, and the position of the super-strong force chain coordination peak increased gradually as content of coarse particles increased.

参考文献/References:

[1] 杨柳,李飞,王金安,等.综放开采顶煤与覆岩力链结构及演化特征[J].煤炭学报,2018,43(8): 2144-2154. [YANG Liu, LI Fei, WANG Jinan, et al. Structures and evolution characteristics of force chains in top coal and overlying strata under fully mechanized caving mining[J]. Journal of China Coal Society, 2018, 43(8):2144-2154]
[2] 孙其诚,王光谦.静态堆积颗粒中的力链分布[J].物理学报,2008,57(8):4667-4674.[SUN Jicheng, WANG Guangqian. Force distribution in static granular matter in two dimensions[J]. Acta Physica Sinica, 2008, 57(8): 4667-4674]
[3] 王金安,韩现刚,庞伟东,等.综放开采顶煤与覆岩力链结构及演化光弹试验研究[J].工程科学学报,2017,39(1): 13-22.[WANG Jin'an, HAN Xian'gang, PANG Weidong, et al. Photoelastic experimental study on the force chain structure and evolution in top coal and overlaying strata under fully mechanized top coal caving minings[J]. Chinese Journal of Engineering, 2017, 39(1):13-22]
[4] LO C M, LIN Minglang, TANG C L, et al. A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit[J].Landslides, 2014, 11(2): 293-304.
[5] John Mark Nicholas Timm Gray. Particle segregation in dense granular flows[J]. Annual Review of Fluid Mechanics, 2018, 50(1): 407-433.
[6] MAJMUDAR T S, BEHRINGER R P. Contact force measurements and stress-induced anisotropy in granular materials[J]. Nature, 2005, 435(745): 1079-1082.
[7] ZHOU Yuanyuan, SHI Zhenming, ZHANG Qingzhao, et al. 3D DEM investigation on the morphology and structure of landslide dams formed by dry granular flows[J]. Engineering Geology, 2019, 258:1-11.
[8] 顾晓强,杨朔成.基于离散元数值方法的砂土小应变弹性特性探讨[J].岩土力学,2019,40(2): 785-791.[GU Xiaoqiang, YANG Shuocheng. Numerical investigation on the elastic properties of granular soils by discrete element method[J]. Rock and Soil Mechanics, 2019, 40(2):785-791]
[9] 刘洋,吴顺川,周健.单调荷载下砂土变形过程数值模拟及细观机制研究[J].岩土力学,2008,29(12): 3199-3204+3216.[LIU Yang, WU Shunchuan, ZHOU Jian. Numerical simulation of sand deformation under monotonic loading and mesomechanical analysis[J]. Rock and Soil Mechanics, 2008, 29(12):3199-3204+3216]
[10] 李飞,杨柳,王金安,等.混合颗粒体光弹力链定量提取方法[J].工程科学学报,2018,40(3):302-312.[LI Fei, YANG Liu, WANG Jinan, et al. A quantitative extraction method of force chains for composite particles in a photoelastic experiment[J]. Chinese Journal of Engineering, 2018, 40(3): 302-312]
[11] 胡敏云,肖斌,张旭俊,等.粗粒土细观组构分析的影响因素研究[J].浙江工业大学学报,2018,46(3):342-349.[HU Minyun, XIAO Bin, ZHANG Xujun, et al. Study on influential factors of micro-fabric analysis of granular sand[J]. Journal of Zhejiang University of Technology, 2018, 46(3): 342-349]
[12] TORDESILLAS A, O'SULLIVAN P, WALKER D M, et al. Evolution of functional connectivity in contact and force chain networks: Feature vectors, k-cores and minimal cycles[J]. Comptes Rendus Mécanique, 2010, 338(10/11): 556-569.
[13] 常明丰,裴建中,黄平明,等.考虑级配颗粒物质间接触力力链的分布概率分析[J].材料导报,2018,32(20): 3618-3622.[CHANG Mingfeng, PEI Jianzhong, HUANG Pingming, et al. Analysis on the distribution probability of force among granular matter considering gradation[J]. Materials Review, 2018, 32(20):3618-3622]
[14] 樊晓一,杨海龙,田述军,等.滑坡碎屑流运动参数与影响因素敏感度研究[J].山地学报,2016,34(6):724-731.[FAN Xiaoyi, YANG Hailong, TIAN Shujun, et al. Susceptibility degree of factors influence on the movement parameters of landslide-debris avalanches[J]. Mountain Research, 2016, 34(6): 724-731]
[15] RATTANADIT K, BOBARU F, PROMRATANA K, et al. Force chains and resonant behavior in bending of a granular layer on an elastic support[J]. Mechanics of Materials, 2009, 41(6): 691-706.
[16] YI Chenhong, YUAN Liu, MIAO Tiande, et al. Force transmission in three-dimensional hexagonal-close-packed granular arrays with point defect submitted to a point load[J]. Granular Matter, 2007, 9(3/4): 195-203
[17] 李天话,樊晓一,姜元俊.岩土体颗粒级配对碎屑流冲击作用的影响研究 [J].山地学报,2018,36(2):289-297.[LI Tianhua, FAN Xiaoyi, JIANG Yuanjun. Influence of Gradation on the Impact Effect of Landslide Debris Flow [J]. Mountain Research, 36(2):289-297]
[18] GORDON G Z, CHARLES W N. Numerical investigation of reverse segregation in debris flows by DEM[J]. Granular Matter, 2010, 12(5): 507-516.
[19] YANG Qing, FEI Cai, UGAI K, et al. Some factors affecting mass-front velocity of rapid dry granular flows in a large flume[J]. Engineering Geology, 2011, 122(3/4): 249-260.
[20] 李天话,樊晓一,姜元俊.不同颗粒级配滑坡碎屑流等效冲击力及作用位置分布研究[J].山地学报,2018,36(5):740-749.[LI Tianhua, FAN Xiaoyi, JIANG Yuanjun. Study on equivalent impact force and impact distribution range of landslide debris flow with different gradation[J]. Mountain Research, 2018, 36(5): 740-749]
[21] 王金安,梁超,庞伟东.颗粒体双轴加载双向流动力链演化光弹试验研究[J].岩土力学,2016,37(11): 3041-3047+3064.[WANG Jinan, LIANG Chao, PANG Weidong. Photoelastic experiment on force chain evolution of particle aggregate under the conditions of biaxially loading and bilaterally flowing[J]. Rock and Soil Mechanics, 2016, 37(11):3041-3047+3064]
[22] JIANG Yuanjun, TOWHATA I. Experimental study of dry granular flow and impact behavior against a rigid retaining wall[J]. Rock Mechanics and Rock Engineering, 2013, 46(4): 713-729.
[23] 张炜,周剑,于世伟,等.双轴压缩下颗粒物质接触力与力链特性研究[J].应用力学学报,2018(3): 530-537+687.[ZHANG Hui, ZHOU Jian, YU Shiwei, et al. Investigation on contact force and force chain of granular matter in biaxial compression[J]. Chinese Journal of Applied Mechanics, 2018(3): 530-537+687]
[24] 孙其诚,金峰,王光谦,等.二维颗粒体系单轴压缩形成的力链结构[J].物理学报,2010,59(1):30-37.[SUN Jicheng, JIN Feng, WANG Guangqian, et al. Force chains in a uniaxially compressed static granular matter in 2D[J]. Acta Physica Sinica, 2010, 59(1): 30-37]
[25] 眭静,姜元俊,樊晓一,等.碎屑流冲击刚性挡墙的力学模型研究[J].岩石力学与工程学报,2019,38(1):121-132.[SUI Jing, JIANG Yuanjun, FAN Xiaoyi, et al. An impact model of granular flows on a rigid wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(1): 121-132]

备注/Memo

备注/Memo:
收稿日期(Received date): 2019-09-15; 改回日期(Accepted date): 2020-05-10
基金项目(Foundation item):国家自然科学基金项目(41877524); 工程材料与结构冲击振动四川省重点实验室开放基金项目(18kfjk10)[National Natural Science Foundation of China(41877524); The Opening Fund of Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province(18kfjk10)]
作者简介(Biography):张志东(1994-),男,硕士研究生,主要研究方向:地质灾害。[ZHANG Zhidong(1994-),male, M.Sc. candidate, research on geological disaster]E-mail: 591013567@qq.com
*通讯作者(Corresponding author):樊晓一(1974-),男,博士,教授,硕士生导师,主要研究方向:地质灾害评价预测与防治处理。[FAN Xiaoyi(1974-), male, Ph.D., professor, specialized in geological disaster evaluation, prevention and treatment]E-mail: xyfan1003@126.com
更新日期/Last Update: 2020-05-30