[1]朱 钰,刘时银*,易 颖,等.“三江并流区”水储量的时空变化特征及其对ENSO的响应[J].山地学报,2020,(02):165-179.[doi:10.16089/j.cnki.1008-2786.000499]
 ZHU Yu,LIU Shiyin*,YI Ying,et al.Spatiotemporal Changes of Terrestrial Water Storage in Three Parallel River Basins and Its Response to ENSO[J].Mountain Research,2020,(02):165-179.[doi:10.16089/j.cnki.1008-2786.000499]
点击复制

“三江并流区”水储量的时空变化特征及其对ENSO的响应()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年02期
页码:
165-179
栏目:
山地环境
出版日期:
2020-03-30

文章信息/Info

Title:
Spatiotemporal Changes of Terrestrial Water Storage in Three Parallel River Basins and Its Response to ENSO
文章编号:
1008-2786-(2020)2-165-15
作者:
朱 钰12刘时银12*易 颖12李婉秋3张思豆12
1.云南大学 国际河流与生态安全研究院,云南 昆明 650091; 2.云南省国际河流与跨境生态重点实验室,云南 昆明 650091; 3.山东科技大学 测绘科学与工程学院,山东 青岛 266590
Author(s):
ZHU Yu12LIU Shiyin12*YI Ying12LI Wanqiu3ZHANG Sidou12
1. Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Kunming 650091, Yunnan China; 2. Institute of International Rivers and Eco-Security Yunnan University, Kunming 650091, Yunnan China; 3. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, Shandong China
关键词:
水储量 时空分异 ENSO 青藏高原 三江并流区
分类号:
K903
DOI:
10.16089/j.cnki.1008-2786.000499
文献标志码:
A
摘要:
青藏高原东南部的“三江并流区”气候环境复杂且敏感,陆地水循环过程空间分异明显,在全球气候变化背景下,区域旱涝灾害频发,水循环过程发生变化,刻画区域水储量时空变化特征有助于揭示灾害事件产生的原因。本文使用GRACE RL06数据、水文模型数据、实测数据等,反演获得了2002年4月—2016年8月“三江并流区”水储量变化时间序列及其多年变化空间分布,分析了水储量异常与旱涝事件的联系,进一步探讨了ENSO对水储量影响的强度及滞后程度,并就水储量反演的不确定性做了讨论。获得如下结论:(1)区域水储量处于下降状态,除个别年份,水储量的亏损超过35 mm/a,区域整体较干旱,土壤水是水储量变化的主要组分,区域干旱事件的发生大多与土壤水的持续下降有关;(2)水储量变化空间分异明显,西南下降、西北上升,怒江流域为水储量严重亏损的区域,水储量持续下降的区域常伴随着干旱事件的发生;(3)ENSO对水储量变化的影响存在2.72个月的时滞,每个月的影响强度为0.95 mm,水储量存在重大亏损的区域,ENSO影响强度相对偏大;(4)使用双重尺度因子能在一定程度上恢复滤波造成的误差,但受数据空间分辨率的影响,反演结果仍只能反映变化趋势,难以刻画水储量变化的细部特征。

参考文献/References:

[1] CHEN Xuhui, JIANG Jinbao, HUI Li. Drought and flood monitoring of the Liao river basin in Northeast China using extended GRACE data[J]. Remote Sensing, 2018, 10(8): 1168.
[2] SCHUMACHER M, FOROOTAN E, DIJK A V, et al. Improving drought simulations within the Murray-Darling Basin by combined calibration/assimilation of GRACE data into the WaterGAP Global Hydrology Model[J]. Remote Sensing of Environment, 2018, 204:212-228.
[3] CHEN J L, WILSON C R, TAPLEY B D, et al. 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models[J]. Journal of Geophysical Research, 2009, 114: B05404.
[4] 冯伟,王长青,穆大鹏,等.基于GRACE的空间约束方法监测华北平原地下水储量变化[J].地球物理学报,2017,60(5):1630-1642.[FENG Wei, WANG Changqin, MU Dapeng, et al. Groundwater storage variations in the North China Plain from GRACE with spatial constraints[J]. Chinese Journal of Geophysics-Chinese Edition, 2017, 60(5): 1630-1642]
[5] WANG Linsong, MIKHAIL K K, MAIK T, et al. The challenge of spatial resolutions for GRACE-Based estimates volume changes of larger Man-Made lake: the case of China's three gorges reservoir in the Yangtze river[J]. Remote Sensing, 2019, 11(1): 99.
[6] 李圳,章传银,柯宝贵,等.顾及GRACE季节影响的华北平原水储量变化反演[J].测绘学报,2018,47(7): 940-949.[LI Zhen, ZHANG Chuanyin, KE Baogui, et al. North China plain water storage variation analysis based on GRACE and seasonal influence considering[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(7): 940-949]
[7] 尼胜楠,陈剑利,李进,等.利用GRACE卫星时变重力场监测长江、黄河流域水储量变化[J].大地测量与地球动力学,2014,34(4):49-55.[NI Shengnan, CHEN LiJian, LI Jin, et al. Terrestrial water storage change in the Yangtze and Yellow River basins from GRACE time-variable gravity measurements[J]. Journal of Geodesy and Geodynamics, 2014, 34(4):49-55]
[8] SCANLON B R, LONGUEVERGNE L, LONG D. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA[J]. Water Resources Research, 2012, 48(4): W4520.
[9] MOHAMED A, KAREM A. Quantifying modern recharge and depletion rates of the Nubian Aquifer in Egypt[J]. Surveys in Geophysics, 2018, 39(4): 729-751.
[10] ZHANG Zizhan, CHAO B F, CHEN Jianli, et al. Terrestrial water storage anomalies of Yangtze River Basin droughts observed by GRACE and connections with ENSO[J]. Global and Planetary Change, 2015, 126(126): 35-45.
[11] 金钟炜,金涛勇.联合GRACE和气象水文数据研究2010-2016年亚马孙平原水储量异常变化与极端气候和ENSO的关系[J].大地测量与地球动力学,2019,39(2): 199-203.[JIN Zhongwei, JIN Taoyong. Correlation between ENSO and total water storage change anomaly with extreme weather events over Amazon basin from 2010 to 2016 estimated from GRACE and hydroclimatic data[J]. Journal of Geodesy and Geodynamics, 2019, 39(2): 199-203]
[12] ANYAH R O, FOROOTAN E, AWANGE J L, et al. Understanding linkages between global climate indices and terrestrial water storage changes over Africa using GRACE products[J]. Science of the Total Environment, 2018, 635:1405-1416.
[13] NI Shengnan, CHEN Jianli, WILSON C R, et al. Global terrestrial water storage changes and connections to ENSO events[J]. Surveys in Geophysics, 2018, 39(1): 1-22.
[14] 骆银辉,崔子良.云南三江并流区地质环境问题研究[M].昆明:云南科学技术出版社,2012:12-23.[LUO Yinhui, CUI Ziliang. Research on geologic environment in three parallel rivers of Yunnan protected areas[M]. Kunming: Yunnan Science & Technology Publishing House, 2012:12-23]
[15] 荣艳淑,巩琳,卢寿德.云南2009—2014年持续性气象水文干旱特征及成因分析[J].水资源保护,2018,34(3):22-29.[RONG Yanshu, GONG Lin, LU Shoude. Analysis on characteristics and causes of persistent meteorological and hydrological drought in Yunnan from 2009 to 2014[J]. Water Resources Protection, 2018, 34(3): 22-29.]
[16] TAPLEY B D, BETTADPUR S, WATKINS M, et al. The gravity recovery and climate experiment: mission overview and early results[J]. Geophysical Research Letters, 2004, 31(9):L09607.
[17] 高春春,陆洋,史红岭等.基于GRACE RL06数据监测和分析南极冰盖27个流域质量变化[J].地球物理学报,2019,62(3):864-882.[GAO Chunchun, LU Yang, SHI Hongling. Detection and analysis of ice sheet mass changes over 27 Antarctic drainage systems from GRACE RL06 data[J]. Chinese Journal of Geophysics(in Chinese), 2019, 62(3):864-882]
[18] CHENG Minkang, TAPLEY B D. Variations in the earth's oblateness during the past 28 years[J]. Journal of Geophysical Research: Solid Earth, 2004, 109: B04402.
[19] CHEN J L, WILSON C R. Low degree gravity changes from GRACE, Earth rotation, geophysical models, and satellite laser ranging[J]. Journal of Geophysical Research, 2008, 113(B6): 1-9.
[20] SHIN-CHAN H, SHUM C K, CHRISTOPHER J, et al. Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement[J]. Geophysical Journal International, 2005, 163(1): 18-25.
[21] WU Qifan, SI Bingcheng, HE Hailong, et al. Determining Regional-Scale groundwater recharge with GRACE and GLDAS[J]. Remote Sensing, 2019, 11(2): 154.
[22] PENG Yang, JUN Xia, ZHAN Chesheng, et al. Reconstruction of terrestrial water storage anomalies in Northwest China during 1948-2002 using GRACE and GLDAS products[J]. Hydrology Research, 2018, 49(5): 1594-1607.
[23] LI Xia, GAO Yanhong, WANG Wanzhao, et al. Climate change and applicability of GLDAS in the headwater of the Yellow River basin[J]. Advances in Earth Science, 2014, 29:531-540.
[24] RODELL M, HOUSER P R, JAMBOR U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85:381-394.
[25] YUN Fan. Climate prediction center global monthly soil moisture data set at 0.5° resolution for 1948 to present[J]. Journal of Geophysical Research, 2004, 109: D10102.
[26] SCHNEIDER U, BECKER A, FINGER P, et al. GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle[J]. Theoretical and Applied Climatology, 2014, 115(1/2): 15-40.
[27] SONI A, SYED T H. Diagnosing Land Water Storage Variations in Major Indian River Basins using GRACE observations[J]. Global & Planetary Change, 2015, 133:263-271.
[28] WOLTER K, MICHAEL S T. El Niño/southern oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index(MEI.ext)[J]. International Journal of Climatology, 2011, 31(7): 1074-1087.
[29] POMPA-GARCíA M, NéMIGA X A. ENSO index teleconnection with seasonal precipitation in a temperate ecosystem of northern Mexico[J]. Atmósfera, 2015, 28(1): 43-50.
[30] RÄSÄNEN T A, LINDGREN V, GUILLAUME J A, et al. On the spatial and temporal variability of ENSO precipitation and drought teleconnection in mainland Southeast Asia[J]. Climate of the Past Discussions, 2015, 11(6): 5307-5343.
[31] ROJO J, RIVERO R, ROMERO-MORTE J, et al. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing[J]. International Journal of Biometeorology, 2017, 61(2): 335-348.
[32] SANCHEZ-VAZQUEZ M J, NIELEN M, GEORGE J G, et al. Using seasonal-trend decomposition based on loess(STL)to explore temporal patterns of pneumonic lesions in finishing pigs slaughtered in England, 2005-2011[J]. Preventive Veterinary Medicine, 2012, 104(1/2): 65-73.
[33] CLEVELAND R B, CLEVELAND W S. A seasonal-trend decomposition procedure based on loess[J]. Journal of Official Statistics, 1990, 6:3-33.
[34] WAHR J, MOLENAAR M, BRYAN F. Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30205-30229.
[35] FENG Wei, ZHONG Min, JEAN-MICHEL L, et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment(GRACE)data and ground-based measurements[J]. Water Resources Research, 2013, 49(4): 2110-2118.
[36] SWENSON S, WAHR J. Post-processing removal of correlated errors in GRACE data[J]. Geophysical Research Letters, 2006, 33(8): 1-4.
[37] KLEES R, ZAPREEVA E A, WINSEMIUS H C, et al. The bias in GRACE estimates of continental water storage variations[J]. Hydrology and Earth System Sciences, 2007, 11(4): 1227-1241.
[38] 冯伟,王长青,穆大鹏,等.基于GRACE的空间约束方法监测华北平原地下水储量变化[J].地球物理学报,2017,60(5):1630-1642.[FENG Wei, WANG Changqing, MU Dapeng, et al. Groundwater storage variations in the North China Plain from GRACE with spatial constraints[J]. Chinese Journal of Geophysics, 2017, 60(5): 1630-1642]
[39] 李婉秋,王伟,章传银,等.利用GRACE卫星重力数据监测关中地区地下水储量变化[J].地球物理学报,2018,61(6):2237-2245.[LI Wanqiu, WANG Wei, ZHANG Chuanyin, et al. Monitoring groundwater storage variations in the Guanzhong area using GRACE satellite gravity data[J]. Chinese Journal of Geophysics, 2018, 61(6): 2237-2245]
[40] LONG Di, YANG Yuting, WADA Y, et al. Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin[J]. Remote Sensing of Environment, 2015, 168:177-193.
[41] CAO Yanping, NAN Zhuotong, CHENG Guodong. GRACE gravity satellite observations of terrestrial water storage changes for drought characterization in the arid land of northwestern China[J]. Remote Sensing, 2015, 7(1): 1021-1047.
[42] GHIGGI G, HUMPHREY V, SENEVIRATNE S I, et al. GRUN: an observations-based global gridded runoff dataset from 1902 to 2014[J]. Earth System Science Data, 2019, 11(4): 1655-1674.
[43] DÖLL P, SCHMIED H M, SCHUH C, et al. Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites[J]. Water Resources Research, 2014, 50(7): 5698-5720.
[44] CHAO Nengfang, WANG Zhengtao. Characterized flood potential in the Yangtze river basin from GRACE gravity observation, hydrological model, and In-Situ hydrological station[J]. Journal of Hydrologic Engineering, 2017, 22(9): 05017016.
[45] 杨大文,杨汉波,雷慧闽.流域水文学[M].北京:清华大学出版社,2014:21-46.[YANG Dawen, YANG Hanbo, LEI Huimin. Watershed hydrology[M]. Beijing: Tsinghua University Press, 2014:21-46]
[46] PHILLIPS T, NEREM R S, FOX-KEMPER B, et al. The influence of ENSO on global terrestrial water storage using GRACE[J]. Geophysical Research Letters, 2012, 39(16):L1605.
[47] SALISBURY J I, WIMBUSH M. Using modern time series analysis techniques to predict ENSO events from the SOI time series[J]. Nonlinear Processes in Geophysics, 2002, 9(3/4): 341-345.
[48] KÄÄB A, TREICHLER D, NUTH C, et al. Brief communication: contending estimates of 2003-2008 glacier mass balance over the Pamir-Karakoram-Himalaya[J]. The Cryosphere, 2015, 9(2): 557-564.
[49] ZHOU Yushan, LI Zhiwei, JIA Li, et al. Glacier mass balance in the Qinghai-Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs[J]. Remote Sensing of Environment, 2018, 210:96-112.
[50] BERTHIER E, CABOT V, VINCENT C, et al. Decadal Region-Wide and Glacier-Wide mass balances derived from Multi-Temporal ASTER satellite digital elevation models. validation over the Mont-Blanc area[J]. Frontiers in Earth Science, 2016, 4:63.
[51] OUYANG R, LIU W, FU G, et al. Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years[J]. Hydrology and Earth System Sciences, 2014, 11(4): 4235-4265.
[52] 刘颖,倪允琪.ENSO对亚洲夏季风环流和中国夏季降水影响的诊断研究[J].气象学报,1998,56(6):681-691.[LIU Ying, NI Yunqi. Diagnostic research of the effects of ENSO on the Asian summer monsoon circulation and the summer precipitation in China[J]. Acta Meteorologica Sinica, 1998, 56(6): 681-691]
[53] JUAN Feng, WEN Chen. Interference of the East Asian winter monsoon in the impact of ENSO on the East Asian summer monsoon in decaying phases[J]. Advances in Atmospheric Sciences, 2014, 31(2): 344-354.
[54] MANHIQUE A J, REASON C C, RYDBERG L, et al. ENSO and Indian ocean sea surface temperatures and their relationships with tropical temperate troughs over Mozambique and the southwest Indian ocean[J]. International Journal of Climatology, 2011, 31(1): 1-13.
[55] BRACCO A, KUCHARSKI F, MOLTENI F, et al. A recipe for simulating the interannual variability of the Asian summer monsoon and its relation with ENSO[J]. Climate Dynamics, 2007, 28(5): 441-460.
[56] HU Xiaogong, CHEN Jianli. ZHOU Yonghong. Seasonal variation of water storage in the Yangtze river basin measured by GRACE[J]. Science in China Series D, 2006, 36:225-232.
[57] 翟盘茂.气候变化与灾害[M].北京:气象出版社,2009:89-124.[ZHAI Panmao. Climate change and disasters[M]. Beijing: China Meteorological, 2009:89-124]
[58] 李栋梁,何金海,汤绪,等.青藏高原地面加热场强度与ENSO循环的关系[J].高原气象,2007,26:39-46[LI dongliang, HE Jinhai, TANG Xu, et al. The relationship between the intensity of surface heating fields over the Qinghai-Xizang plateau and ENSO cycle[J]. Plateau Meteorology, 2007, 26:39-46]

相似文献/References:

[1]李红梅 周秉荣*,申红艳,肖宏斌.青海高原干旱时空分异特征及发生风险研究[J].山地学报,2019,(02):230.[doi:10.16089/j.cnki.1008-2786.000417]
 LI Hongmei,ZHOU Bingrong*,SHEN Hongyan XIAO Hongbing.Research on Temporal and Spatial Differentiation and Occurrence Risks of Drought in Qinghai, China[J].Mountain Research,2019,(02):230.[doi:10.16089/j.cnki.1008-2786.000417]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-09-30; 改回日期(Accepted date): 2020-03-18
基金项目(Foundation item):云南大学引进人才科研项目(YJRC3201702); 国家自然科学基金国际合作与交流项目(41761144075); 云南大学第十届研究生科研创新项目(2018Z099)。[ Introducing Talent Research Projects In Yunnan University(YJRC3201702); Projects of International Cooperation and Exchange, NSFC(41761144075); The Tenth Graduate Research Innovation Project In Yunnan University(2018Z099)]
作者简介(Biography):朱钰(1992-),男,甘肃平凉人,博士研究生,主要研究方向:水文过程模拟。[ZHU Yu(1992-), male, born in Pingliang, Gansu province. Ph.D. candidate, research on hydrological process simulation] E-mail: yuzhu@mail.ynu.edu.cn
*通讯作者(Corresponding author):刘时银(1963-),男,研究员,主要研究方向:冰冻圈与水循环。[LIU Shiyin(1963-), male, professor, specialized in the cryosphere and water circulation]
更新日期/Last Update: 2020-03-30