[1]罗 贤,季 漩,李运刚,等.怒江流域中上游地表冻融特征及时空分布[J].山地学报,2017,(03):266-273.[doi:10.16089/j.cnki.1008-2786.000221]
 LUO Xian,JI Xuan,LI Yungang,et al.Spatial and Temporal Distribution and Variation Characteristics of Surface Freeze/Thaw Status in the Upper and Middle Nujiang River Basin[J].Mountain Research,2017,(03):266-273.[doi:10.16089/j.cnki.1008-2786.000221]
点击复制

怒江流域中上游地表冻融特征及时空分布()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2017年03期
页码:
266-273
栏目:
山地环境
出版日期:
2017-05-30

文章信息/Info

Title:
Spatial and Temporal Distribution and Variation Characteristics of Surface Freeze/Thaw Status in the Upper and Middle Nujiang River Basin
文章编号:
1008-2786-(2017)3-266-08
作者:
罗 贤季 漩李运刚黄江成
云南大学 亚洲国际河流中心/云南省国际河流与跨境生态安全重点实验室,云南 昆明 650091
Author(s):
LUO Xian JI Xuan LI Yungang HUANG Jiangcheng
Asian International Rivers Center of Yunnan University, Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan Kunming 650091, China
关键词:
地表冻融状态 被动微波遥感 气候变化 怒江流域
分类号:
P933
DOI:
10.16089/j.cnki.1008-2786.000221
文献标志码:
A
摘要:
冻土水文过程的复杂性使其分析及模拟较为困难,在研究青藏高原冻土退化水文效应的过程中,需要明确流域内土壤冻结和融化状态的时空变化特征。利用被动微波遥感数据反演获得的地表冻融状态,系统地辨识怒江流域中上游地表冻融状态时空变异特征。结果表明:1.怒江流域贡山水文站以上年平均地表冻结天数>270 d的区域占研究区总面积的32.0%,而180~270 d的则约占62.3%,海拔高度每升高1 000 m,年地表冻结天数平均增长约62 d; 2.研究区不同年份持续冻结的开始和结束时间差异较大,融化-冻结阶段的9—10月平均气温与阶段末10月地表冻结面积的相关系数为-0.80,而冻结-融化阶段的4—6月平均气温与阶段末6月地表冻结面积的相关系数则为-0.87,均在0.01水平上显著负相关,研究区气温的年际波动导致地表冻结面积、冻结日期、融化日期及冻结持续时间等的年际变化; 3.被动微波遥感反演获得的高时间分辨率冻融状态数据,可为气候变化背景下,缺资料高原山地流域大范围地表冻融状态变化分析、流域尺度水文过程模拟等提供良好的数据支撑。

参考文献/References:

[1] 杨梅学, 姚檀栋, Nozomu H, 等.青藏高原表层土壤的日冻融循环[J].科学通报, 2006, 51(16): 1974-1976[YANG Meixue, YAO Tandong, GOU Xiaohua, et al.Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau [J].Chinese Science Bulletin, 2007, 52(1): 136-139]
[2] WU Qingbai, ZHANG Tingjun.Recent permafrost warming on the Qinghai-Tibetan Plateau [J].Journal of Geophysical Research, 2008, 113: D13108
[3] KANG Shichang, XU Yanwei, YOU Qinglong, et al.Review of climate and cryospheric change in the Tibetan Plateau [J].Environmental Research Letters, 2010, 5(1): 015101
[4] LI Xin, JIN Rui, PAN Xiaoduo, et al.Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau [J].International Journal of Applied Earth Observation and Geoinformation, 2012, 17: 33-42
[5] 程国栋, 金会军.青藏高原多年冻土区地下水及其变化[J].水文地质工程地质, 2013, 40(1): 1-11[CHENG Guodong, JIN Huijun.Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes [J].Hydrogeology & Engineering Geology, 2013, 40(1): 1-11]
[6] 陈仁升, 康尔泗, 吉喜斌, 等.黑河源区高山草甸的冻土及水文过程初步研究[J].冰川冻土, 2007, 29(3): 387-396[CHEN Rensheng, KANG Ersi, JI Xibin, et al.Preliminary study of the hydrological processes in the alpine meadow and permafrost regions at the headwaters of Heihe River [J].Journal of Glaciology and Geocryology, 2007, 29(3): 387-396]
[7] 孙颖娜, 付强, 姜宁, 等.寒区冻土水文模拟模型研究若干进展[J].水文, 2008, 28(4): 1-4[SUN Yingna, FU Qiang, JIANG Ning, et al.Research on hydrological frozen soil simulation model for cold area [J].Journal of China Hydrology, 2008, 28(4): 1-4]
[8] WANG Genxu, HU Hongchang, LI Taibin.The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed [J].Journal of Hydrology, 2009, 375: 438-449
[9] 阳勇, 陈仁升.冻土水文研究进展[J].地球科学进展, 2011, 26(7): 711-723[YANG Yong, CHEN Rensheng.Research review on hydrology in the permafrost and seasonal frozen regions [J].Advances in Earth Science, 2011, 26(7): 711-723]
[10] CHRISTOPHER Spence,AMANDA Burke.Estimates of Canadian Arctic Archipelago runoff from observed hydrometric data [J].Journal of Hydrology, 2008, 362: 247-259
[11] 王晓巍, 付强, 丁辉, 等.季节性冻土区水文特性及模型研究进展[J].冰川冻土, 2009, 31(5): 953-959[WANG Xiaowei, FU Qiang, DING Hui, et al.Advances in researches on hydrologic features and their modeling in seasonal frozen soil regions [J].Journal of Glaciology and Geocryology, 2009, 31(5): 953-959]
[12] 王康, 张廷军.中国1956—2006年地表土壤冻结天数时空分布及其变化特征[J].地球科学进展, 2013, 28(11): 1269-1275[WANG Kang, ZHANG Tingjun.Spatial and temporal distribution and variations in the near-surface soil freezing days across China,1956-2006 [J].Advances in Earth Science, 2013, 28(11): 1269-1275]
[13] 叶柏生, 丁永建, 焦克勤, 等.我国寒区径流对气候变暖的响应[J].第四纪研究, 2012, 32(1): 103-110[YE Baisheng, DING Yongjian, JIAO Keqin, et al.The response of river discharge to climate warming in cold region over China [J].Quaternary Sciences, 2012, 32(1): 103-110]
[14] 晋锐, 李新, 车涛.SSM/I监测地表冻融状态的决策树算法[J].遥感学报, 2009, 13(1): 152-161[JIN Rui, LI Xin, CHE Tao.A decision tree algorithm for surface freeze/thaw classification using SSM/I [J].Journal of Remote Sensing, 2009, 13(1): 152-161]
[15] 张廷军, 晋锐, 高峰.冻土遥感研究进展: 被动微波遥感[J].地球科学进展, 2009, 24(10): 1073-1083[ZHANG Tingjun, JIN Rui, GAO Feng.Overview of the satellite remote sensing of frozen ground: passive microwave sensors [J].Advances in Earth Science, 2009, 24(10): 1073-1083]
[16] 杜军, 翁海卿, 袁雷, 等.近40年西藏怒江河谷盆地的气候特征及变化趋势[J].地理学报, 2009, 64(5): 581-591[DU Jun, WENG Haiqing, YUAN Lei, et al.The climate characteristics and changing trends over the Nujiang River Basin in Tibet from 1971 to 2008 [J].Acta Geographica Sinica, 2009, 64(5): 581-591]
[17] 樊辉, 何大明.怒江流域气候特征及其变化趋势[J].地理学报, 2012, 67(5): 621-630[FAN Hui, HE Daming.Regional climate and its change in the Nujiang River Basin [J].Acta Geographica Sinica, 2012, 67(5): 621-630]
[18] 罗贤, 何大明, 季漩, 等.近50年怒江流域中上游枯季径流变化及其对气候变化的响应[J].地理科学, 2016,36(1): 107-113[LUO Xian, HE Daming, JI Xuan, et al.Low flow variations in the middle and upper Nujiang River Basin and possible responds to climate change in recent 50 years [J].Scientia Geographica Sinica, 2016,36(1): 107-113]
[19] 杜军, 建军, 洪健昌, 等.1961-2010年西藏季节性冻土对气候变化的响应[J].冰川冻土, 2012, 34(3): 512-521[DU Jun, JIAN Jun, HONG Jianchang, et al.Response of seasonal frozen soil to climate change on Tibet Region from 1961 to 2010 [J].Journal of Glaciology and Geocryology, 2012, 34(3): 512-521]
[20] 刘昌明, 周成虎, 于静洁, 等.中国水文地理[M].北京: 科学出版社, 2014: 828-829[LIU Changming, ZHOU Chenghu, YU Jingjie, et al.China Hydro-geography [M].Beijing: Science Press, 2014: 828-829]
[21] 陆孝平, 富曾慈.中国主要江河水系要览[M].北京: 中国水利水电出版社, 2010: 128-131[LU Xiaoping, FU Zengci.China's major river systems [M].Beijing: China Water & Power Press, 2010: 128-131]
[22] 刘冬英, 沈燕舟, 王政祥.怒江流域水资源特性分析[J].人民长江, 2008, 39(17): 64-66[LIU Dongying, SHEN Yanzhou, WANG Zhengxiang.Analysis of water resource characteristics in Nujiang River Basin [J].Yangtze River, 2008, 39(17): 64-66]
[23] 中国科学院青藏高原综合科学考察队.西藏河流与湖泊[M].北京: 科学出版社, 1984:24-26[Comprehensive Scientific Expedition of Chinese Academy of Sciences to the Qinghai-Tibetan Plateau.Rivers and Lakes in Tibet [M].Beijing: Science Press, 1984:24-26]
[24] 何大明, 冯彦, 胡金明, 等.中国西南国际河流水资源利用与生态保护[M].北京: 科学出版社, 2007:43-45[HE Daming, FENG Yan, HU Jinming, et al.Utilization of water resources and environmental conservation in the international rivers, Southwest China [M].Beijing: Science Press, 2007:43-45]
[25] 周幼吾, 郭东信, 邱国庆, 等.中国冻土[M].北京: 科学出版社, 2000:19-21, 42-45[ZHOU Youwu, GUO Dongxin, QIU Guoqing, et al.Geocryology in China [M].Beijing: Science Press, 2000:19-21, 42-45]

备注/Memo

备注/Memo:
收稿日期(Received date):2016-02-01; 修回日期(Accepted date):2016-06-29。
基金项目(Foundation item):国家自然科学基金项目(41601026); 喜马拉雅地区气候变化适应性研究项目(挪威外交部和瑞典国际发展署)[National Natural Science Foundation of China(41601026); the Himalayan Climate Change Adaptation Program(the Ministry of Foreign Affairs, Norway and Swedish International Development Agency)]
作者简介(Biography):罗贤(1985-),男,云南玉溪人,博士,助理研究员,主要从事水文水资源研究。[Luo Xian, male, born in 1985, Yuxi of Yunnan province, Ph.D, research associate, mainly engaged in hydrology and water resources.] E-mail: luoxian@ynu.edu.cn
更新日期/Last Update: 2017-05-30