[1]周 俊,邴海健,吴艳宏*,等.贡嘎山燕子沟土壤磷海拔梯度特征及影响因素[J].山地学报,2016,(04):385-392.[doi:10.16089/j.cnki.1008-2786.000142]
 ZHOU Jun,BING Haijian,WU Yanhong,et al.Variations in Soil P Biogeochemistry and Its Impact Factors along an Altitudinal Gradient in the Yanzigou,Eastern Slope of the Gongga Mountain[J].Mountain Research,2016,(04):385-392.[doi:10.16089/j.cnki.1008-2786.000142]
点击复制

贡嘎山燕子沟土壤磷海拔梯度特征及影响因素()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2016年04期
页码:
385-392
栏目:
山地生态与环境
出版日期:
2016-08-01

文章信息/Info

Title:
Variations in Soil P Biogeochemistry and Its Impact Factors along an Altitudinal Gradient in the Yanzigou,Eastern Slope of the Gongga Mountain
文章编号:
1008-2786-(2016)4-385-08
作者:
周 俊邴海健吴艳宏*孙守琴罗 辑
中国科学院山地表生过程与生态调控重点实验室/中国科学院水利部成都山地灾害与环境研究所,四川 成都 610041
Author(s):
ZHOU JunBING HaijianWU YanhongSUN ShouqinLUO Ji
Key Laboratory of Mountain Surface Processes and Ecological Regulation,Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,China
关键词:
生物有效磷 磷形态 生物地球化学 垂直地带性 燕子沟 贡嘎山
Keywords:
bioavailable phosphorus phosphorus forms biogeochemistry vertical zonation Yanzigou Gongga Mountain
分类号:
P593
DOI:
10.16089/j.cnki.1008-2786.000142
文献标志码:
A
摘要:
土壤磷生物地球化学特征受岩性、气候、土壤年龄、理化性质、地形、植物和微生物活动等因素的共同影响。山地植被和土壤垂直带谱为研究这些因素的相对重要性提供了理想试验场。选取未受人类破坏的贡嘎山燕子沟5个垂直植被带(裸地、高山灌丛带、暗针叶林带、针阔混交林带和阔叶林带,海拔分别为3 761 m、3 600 m、3 403 m、2 700 m和2 334 m),采集了40个土样,测定了土壤的基本理化性质,并采用连续提取法测定了土壤的生物有效磷、铝结合态磷、铁结合态磷、原生矿物磷、有机磷和残余态磷。结果表明,燕子沟土壤A层部分磷形态的空间分布呈现明显的垂直地带性特征。土壤A层的原生矿物磷随海拔的降低而显著降低,有机磷则呈现与原生矿物磷相反的变化趋势。而生物有效磷始终较低,次生矿物磷(铝和铁结合态磷)也较低,残余态磷的含量变化不大,始终是土壤总磷的最大组分。在高海拔地区原生矿物磷是总磷的第二大组分,而在低海拔地区,有机磷则成为总磷的第二大组分。植物是控制燕子沟土壤磷空间分布的相对重要因素,植物一方面通过控制土壤pH进而影响土壤原生矿物磷的含量,另一方面直接吸收生物有效磷,并将其转化为有机磷,导致有机磷随海拔降低而显著增加。此外,植物还通过“泵吸作用”导致总磷在土壤剖面上呈现由表层向底层降低的分布模式。次生矿物磷含量较低表明地球化学作用在影响燕子沟土壤磷生物有效性的作用相对较小。
Abstract:
Soil phosphorus(P)biogeochemistry is subfected to lithology,climate,topography,soil age and physical-chemical properties of soils,activities of plants and microbes. Mountains,with vertical belts of soils and vegetation due to large altitudinal differences,are ideal experimental areas to evaluate relative importances of these impact factors. In order to investigate spatial patterns of soil P biogeochemistry and impact factors,forty soil samples were collected at five different vegetation belts,which were bare area(3 761 m asl(above sea level)),alpine shrub vegetation(3 600 m asl),dark coniferous forests(3403 m asl),coniferous and broad leaved forests(2 700 m asl),and broad leaved forests(2 334 m asl). In addition to find out soil physical-chemical properties,soil P forms in A horizon were measured and separated into bioavailable P(Ex-P),Al bound P(Al-P),Fe bound P(Fe-P),Ca bound P(Ca-P),organic P(OP),and residual P(Res-P)by a sequential extraction technique. Our results showed that the spatial distributions of soil P forms revealed an obvious vertical zonation. The Ca-P concentrations in the A horizon decreased significantly with decreasing elevations. In contrast,OP concentrations in the A horizon increased significantly downslope. The concentrations of Ex-P,Fe-P and Al-P were always low across the five belts. Res-P concentrations changed rarely along slope gradient and accounted for the largest portion of total P except at the 3761 m site. In the high altitude sites,the Ca-P was the second largest part of total P; while in the low altitudinal zones,OP became the second largest part of TP. The influences of vegetation on soil P spatial distributions are more important than those of geochemical processes.We confirmed,plants control soil pH and further impact Ca-P contents in soils. Plants transform inorganic P into OP by directly assimilating Ex-P,and thus cause a large increase of OP. In addition,the distribution pattern that total P concentrations in topsoil are higher than that in bottom is mainly a result of “pumping” of plants. The low contents of secondary mineral P(Fe-P and Al-P)indicates that the effects of geochemical processes(e.g. absorption)on soil P bioavailability are relatively small.

参考文献/References:

[1] Wu Y,Zhou J,Yu D,et al. Phosphorus biogeochemical cycle research in mountainous ecosystems[J]. Journal of Mountain Science,2013,10(1): 43-53
[2] Mage S M,Porder S. Parent material and topography determine soil phosphorus status in the Luquillo Mountains of Puerto Rico[J]. Ecosystems,2013,16(2): 284-294
[3] Zhou J,Wu Y,Prietzel J,et al. Changes of soil phosphorus speciation along a 120-year soil chronosequence in the Hailuogou Glacier retreat area(Gongga Mountain,SW China)[J]. Geoderma,2013,195: 251-259
[4] DeLonge M,Vandecar K L,D'Odorico P,et al. The impact of changing moisture conditions on short-term P availability in weathered soils[J]. Plant and Soil,2013,365: 1-9
[5] Celi L,Cerli C,Turner B L,et al. Biogeochemical cycling of soil phosphorus during natural revegetation of Pinus sylvestris on disused sand quarries in Northwestern Russia[J]. Plant and Soil,2013,367: 121-134
[6] Lambers H,Raven J A,Shaver G R,et al. Plant nutrient-acquisition strategies change with soil age[J]. Trends in Ecology & Evolution,2008,23(2): 95-103
[7] Walker T W,Syers J K. The fate of phosphorus during pedogenesis[J]. Geoderma,1976,15(1): 1-19
[8] Litaor M I,Seastedt T R,Walker M D,et al. The biogeochemistry of phosphorus across an alpine topographic/snow gradient[J]. Geoderma,2005,124(1): 49-61
[9] Kauffman J B,Cummings D L,Ward D E. Relationships of fire,biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado[J]. Journal of Ecology,1994,82: 519-531
[10] Tiessen H,Chacon P,Cuevas E. Phosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the upper Rio Negro[J]. Oecologia,1994,99(1-2): 145-150
[11] Wang Y P,Law R M,Pak B. A global model of carbon,nitrogen and phosphorus cycles for the terrestrial biosphere[J]. Biogeosciences,2010,7(7): 2261-2282
[12] Vitousek P M,Matson P A,Turner D R. Elevational and age gradients in hawaiian montane rainforest-foliar and soil nutrients[J]. Oecologia,1988,77: 565-570
[13] Sundqvist M K,Wardle D A,Vincent A,et al. Contrasting nitrogen and phosphorus dynamics across an elevational gradient for subarctic tundra heath and meadow vegetation[J]. Plant and Soil,2014,383(1-2): 387-399
[14] Zhong X H,Zhang W J,Luo J. The characteristics of the mountain ecosystem and environment in the Gongga Mountain region[J]. AMBIO,1999,28: 648-654
[15] 吕儒仁. 贡嘎山区一次特大泥石流[J]. 冰川冻土,1992,14(2): 174-177[Lv Ruren. An extreme heavy debris flow in Mt. Gongga[J]. Journal of Glaciology and Geocology,1992,14(2): 174-177 ]
[16] Wu YH,Li W,Zhou J,et al. Temperature and precipitation variations at two meteorological stations on eastern slope of Gongga Mountain,SW China in the past two decades[J]. Journal of Mountain Science,2013,10: 370-377
[17] Sun S Q,Wu Y H,Wang G X,et al. Bryophyte species richness and composition along an altitudinal gradient in Gongga Mountain,China[J]. PloS one,2013,8(3): e58131
[18] 余大富.贡嘎山的土壤及其垂直地带性 [J]. 1986,土壤通报,1984,15(2): 65-68[Yu D. Vertical zonal characteristics of soil in Gongga Mountain [J]. Chinese Journal of Soil Science,1984,15(2): 65-68]
[19] 朱广伟,秦伯强. 沉积物中磷形态的化学连续提取法应用研究[J]. 农业环境科学学报,2003,22(3): 349-352[Zhu Guangwei,Qin Boqiang. Chemical sequential extraction of phosphorus in lake sediments[J]. Journal of Agro-Environnment Science,2003,22(3):349-352]
[20] Augusto L,Turpault M P,Ranger J. Impact of forest tree species on feldspar weathering rates[J]. Geoderma,2000,96(3): 215-237
[21] Ovington J D. Studies of the development of woodland conditions under different trees: I. Soils pH[J]. Journal of Ecology,1953,41(1): 13-34
[22] Raulund-Rasmussen K,Vejre H. Effect of tree species and soil properties on nutrient immobilization in the forest floor[J]. Plant and Soil,1995,168(1): 345-352
[23] Vitousek P M,Sanford R L. Nutrient Cycling in Moist Tropical Forest[J]. Annu Rev Ecol Syst,1986,17: 137-167
[24] 罗辑,程根伟,陈斌如,等. 贡嘎山垂直带林分凋落物及其理化特征[J]. 山地学报,2003,21(3): 287-292[Luo Ji,Cheng Genwei,Chen Binru,et al. Characteristic of forests litterfall along vertical spectrum on the Gongga Mountain [J]. Mountain Research,2003,21(3): 287-292]
[25] Jobbágy E G,Jackson R B. The uplift of soil nutrients by plants: biogeochemical consequences across scales[J]. Ecology,2004,85(9): 2380-2389
[26] 吴艳宏,周俊,邴海健,等. 贡嘎山海螺沟典型植被带总磷分布特征[J]. 地球科学与环境学报,2012,34(3): 70-74[Wu Y,Zhou J,Bing H,et al. Characteristic of total phosphorus distribution in typical vegetation zones along Hailuogou of Gongga Mountain[J]. Journal of Earth Sciences and Environment,2012,34(3): 70-74]
[27] Nezat C A,Blum J D,Yanai R D,et al. A sequential extraction to determine the distribution of apatite in granitoid soil mineral pools with application to weathering at the Hubbard Brook Experimental Forest,NH,USA[J]. Applied Geochemistry,2007,22(11): 2406-2421
[28] 徐馨,王法明,邹碧,等. 不同林龄木麻黄人工林生物多样性与土壤养分状况研究[J]. 生态环境学报,2013,22(9): 1514-1522[Xu Xin,Wang Faming,Zou Bi,et al. Biodiversity and soil nutrient research of Casuarina Equisetifolia plantation at different stand ages [J]. Ecology and Environmental Sciences,2013,22(9): 1514-1522]
[29] Kitayama K,Majalap-Lee N,Aiba S. Soil phosphorus fractionation and phosphorus-use efficiencies of tropical rainforests along altitudinal gradients of Mount Kinabalu,Borneo[J]. Oecologia,2000,123(3): 342-349
[30] 罗辑,程根伟,李伟,等. 贡嘎山天然林营养元素生物循环特征[J]. 北京林业大学学报,2005,27(2): 13-17[Luo Ji,Cheng Gengwei,Li Wei,et al. Characcteristics of nutrient biocycling of natural forestson the Gongga Mountain[J].Journal of Beijing forestry university,2005,27(2): 13-17]
[31] Unger M,Leuschner C,Homeier J. Variability of indices of macronutrient availability in soils at different spatial scales along an elevation transect in tropical moist forests(NE Ecuador)[J]. Plant and soil,2010,336(1-2): 443-458
[32] Johnson A H,Frizano J,Vann D R. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure[J]. Oecologia,2003,135(4): 487-499

备注/Memo

备注/Memo:
收稿日期(Received date):2015-10-29; 修回日期(Accepted):2015-11-29。
基金项目(Foundation item):国家自然科学基金项目(41401253和41272200)资助。[Supported by the National Nafurac Science Foundation of China(41401253 and 41272200).]
作者简介(Biography):周俊(1983-),男,博士,研究方向为营养元素生物地球化学。[Zhou Jun, born in 1983, male, PhD, studying in biogeochemistry of nutrients.] E-mail:zhoujun@imde.ac.cn
*通信作者(Corresponding author):吴艳宏[Wu Yanhong], Tel: 028-85257118; E-mail:yhwu@imde.ac.cn
更新日期/Last Update: 2016-07-30