参考文献/References:
[1] 李辉霞, 刘国华, 傅伯杰. 基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究[J]. 生态学报, 2011, 31(19): 5495-5504. [LI Huixia, LIU Guohua, FU Bojie. Response of vegetation to climate change and human activity based on NDVI in the Three-River Headwaters region [J]. Acta Ecologica Sinica, 2011, 31(19): 5495-5504]
[2] 邵全琴, 樊江文, 刘纪远, 等. 三江源生态保护和建设一期工程生态成效评估[J]. 地理学报, 2016, 71(1): 3-20. [SHAO Quanqin, FAN Jiangwen, LIU Jiyuan, et al. Assessment on the effects of the first-stage ecological conservation and restoration project in Sanjiangyuan region [J]. Acta Geographica Sinica, 2016, 71(1): 3-20] DOI: 10.11821/dlxb201601001
[3] 赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34(11): 1233-1246. [ZHAO Lin, HU Guojie, ZOU Defu, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1233-1246] DOI: 10.16418/j.issn.1000-3045.2019.11.006
[4] 易湘生, 尹衍雨, 李国胜, 等. 青海三江源地区近50年来的气温变化[J]. 地理学报, 2011, 66(11): 1451-1465. [YI Xiangsheng, YIN Yanyu, LI Guosheng, et al. Temperature variation in recent 50 years in the Three-River Headwaters region of Qinghai province [J]. Acta Geographica Sinica, 2011, 66(11): 1451-1465] DOI: 10.11821/xb201111002
[5] 李万志, 马海玲, 庞昕玮, 等. 气候变暖背景下青海三江源区季节冻土冻融特征研究[J]. 冰川冻土, 2023, 45(4): 1233-1241. [LI Wanzhi, MA Hailing, PANG Xinwei, et al. Study on the characteristics of freezing and thawing of the seasonally frozen ground in the Three-River Source Region of Qinghai under warming climate [J]. Journal of Glaciology and Geocryology, 2023, 45(4): 1233-1241] DOI: 10.7522/j.issn.1000-0240.2023.0094
[6] 梁奔奔, 李晓东, 张东, 等. 1961—2019年三江源地区季节冻土冻融状态时空变化及影响因素研究[J]. 冰川冻土, 2023, 45(2): 382-394. [LIANG Benben, LI Xiaodong, ZHANG Dong, et al. Study on spatiotemporal changes of the freeze-thaw status of seasonally frozen ground and influencing factors in the Three Rivers Source Region from 1961 to 2019 [J]. Journal of Glaciology and Geocryology, 2023, 45(2): 382-394] DOI: 10.7522/j.issn.1000-0240.2023.0029
[7] 胡国杰, 赵林, 李韧, 等. 青藏高原多年冻土区土壤冻融期间水热运移特征分析[J]. 土壤, 2014, 46(2): 355-360. [HU Guojie, ZHAO Lin, LI Ren, et al. Characteristics of hydro-thermal transfer during freezing and thawing period in permafrost regions [J]. Soils, 2014, 46(2): 355-360] DOI: 10.13758/j.cnki.tr.2014.02.026
[8] 焦永亮, 李韧, 赵林, 等. 多年冻土区活动层冻融状况及土壤水分运移特征[J]. 冰川冻土, 2014, 36(2): 237-247. [JIAO Yongliang, LI Ren, ZHAO Lin, et al. Processes of soil thawing-freezing and features of soil moisture migration in the permafrost active layer [J]. Journal of Glaciology and Geocryology, 2014, 36(2): 237-247] DOI: 10.7522/j.issn.1000-0240.2014.0030
[9] WU Xuerui, DONG Zhounan, JIN Shuanggen, et al. First measurement of soil freeze/thaw cycles in the Tibetan Plateau using CYGNSS GNSS-R data [J]. Remote Sensing, 2020, 12(15): 2361. DOI: 10.3390/rs12152361
[10] QIN Yanhui, WU Tonghua, ZHANG Peng, et al. Spatiotemporal freeze-thaw variations over the Qinghai-Tibet Plateau 1981-2017 from reanalysis [J]. International Journal of Climatology, 2021, 41(2): 1438-1454. DOI: 10.1002/joc.6849
[11] GUO Donglin, WANG Anhui, LI Duo, et al. Simulation of changes in the near-surface soil freeze/thaw cycle using clm4.5 with four atmospheric forcing datasets [J]. Journal of Geophysical Research: Atmospheres, 2018, 123(5): 2509-2523. DOI: 10.1002/2017JD028097
[12] MUNOZ-SABATER J, DUTRA E, AGUSTI-PANAREDA A, et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications [J]. Earth System Science Data, 2021, 13(9): 4349-4383. DOI: 10.5194/essd-13-4349-2021
[13] 岳书平, 闫业超, 张树文, 等. 基于ERA5-LAND的中国东北地区近地表土壤冻融状态时空变化特征[J]. 地理学报, 2021, 76(11): 2765-2779. [YUE Shuping, YAN Yechao, ZHANG Shuwen, et al. Spatiotemporal variations of soil freeze-thaw state in northeast China based on the ERA5-LAND dataset [J]. Acta Geographica Sinica, 2021, 76(11): 2765-2779] DOI: 10.11821/dlxb202111012
[14] 薛华柱, 金磊, 董国涛, 等. 河西走廊近40年地表土壤冻融状态变化特征[J]. 水土保持学报, 2023, 37(6): 65-73+82. [XUE Huazhu, JIN Lei, DONG Guotao, et al. Analysis of spatiotemporal variations of freeze-thaw state of surface soil in Hexi Corridor in recent 40 years [J]. Journal of Soil and Water Conservation, 2023, 37(6): 65-73+82] DOI: 10.13870/j.cnki.stbcxb.2023.06.009
[15] 赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土综合监测数据集(2002—2018)[DB/OL]. http://data.tpdc.ac.cn, 2021. [ZHAO Lin, HU Guojie, ZOU Defu, et al. A synthesis dataset of permafrost for the Qinghai-Xizang(Tibet)Plateau, China(2002-2018)[DB/OL]. http://data.tpdc.ac.cn, 2021] DOI: 10.11888/Geocry.tpdc.271107
[16] ZHAO Lin, ZOU Defu, HU Guojie, et al. A synthesis dataset of permafrost thermal state for the Qinghai-Tibet(Xizang)Plateau, China [J]. Earth System Science Data, 2021, 13(8): 4207-4218. DOI: 10.5194/essd-13-4207-2021
[17] ZHANG Lele, GAO Liming, CHEN Ji, et al. Comprehensive evaluation of mainstream gridded precipitation datasets in the cold season across the Tibetan Plateau [J]. Journal of Hydrology: Regional Studies, 2022, 43: 101186. DOI: 10.1016/j.ejrh.2022.101186
[18] 单帅, 沈润平, 师春香, 等. 中国北部积雪区冬季地表温度和2m气温再分析数据评估[J]. 高原气象, 2020, 39(1): 37-47. [SHAN Shuai, SHEN Runping, SHI Chunxiang, et al. Evaluation of land surface temperature and 2 m air temperature from five reanalyses datasets across north China in winter [J]. Plateau Meteorology, 2020, 39(1): 37-47] DOI: 10.7522/j.issn.1000-0534.2019.00003
[19] 杨淑华, 吴通华, 李韧, 等. 青藏高原近地表土壤冻融状况的时空变化特征[J]. 高原气象, 2018, 37(1): 43-53. [YANG Shuhua, WU Tonghua, LI Ren, et al. Spatial-temporal changes of the near-surface soil freeze-thaw status over the Qinghai-Tibetan Plateau [J]. Plateau Meteorology, 2018, 37(1): 43-53] DOI: 10.7522/j.issn.1000-0534.2017.00043
[20] 高黎明, 张乐乐, 沈永平, 等. ERA-Interim和CMFD气象驱动数据在新疆额尔齐斯河流域的适用性评价[J]. 冰川冻土, 2022, 44(1): 179-187. [GAO Liming, ZHANG Lele, SHEN Yongping, et al. Evaluation of applicability of ERA-Interim and CMFD meteorological forcing data in the Irtysh River basin, Xinjiang [J]. Journal of Glaciology and Geocryology, 2022, 44(1): 179-187] DOI: 10.7522/j.issn.1000-0240.2022.0029
[21] MANN H B. Nonparametric tests against trend [J]. Econometrica: Journal of the Econometric Society, 1945, 13(3): 245-259. DOI: 10.2307/1907187
[22] ZHANG Lele, GAO Liming. Drought and wetness variability and the respective contribution of temperature and precipitation in the Qinghai-Tibetan Plateau [J]. Advances in Meteorology, 2021, 2021: 7378196. DOI: 10.1155/2021/7378196
[23] 张璐, 朱仲元, 席小康, 等. 基于SPEI的锡林河流域干旱演化特征分析[J]. 干旱区研究, 2020, 37(4): 819-829. [ZHANG Lu, ZHU Zhongyuan, XI Xiaokang, et al. Analysis of drought evolution in the Xilin River Basin based on Standardized Precipitation Evapotranspiration Index [J]. Arid Zone Research, 2020, 37(4): 819-829] DOI: 10.13866/j.azr.2020.04.02
[24] 张乐乐, 高黎明, 赵林, 等. 基于ITPCAS数据的青藏高原太阳总辐射时空变化特征[J]. 太阳能学报, 2019, 40(9): 2521-2529. [ZHANG Lele, GAO Liming, ZHAO Lin, et al. Spatial and temporal characteristics of global solar radiation over Qinghai-Tibitan plateau based on ITPCAS dataset [J]. Acta Energiae Solaris Sinica, 2019, 40(9): 2521-2529] DOI: 10.19912/j.0254-0096.2019.09.017
[25] 李红梅, 颜亮东, 温婷婷, 等. 三江源地区气候变化特征及其影响评估[J]. 高原气象, 2022, 41(2): 306-316. [LI Hongmei, YAN Liangdong, WEN Tingting, et al. Characteristics of climate change and its impact assessment in the Three-River Regions [J]. Plateau Meteorology, 2022, 41(2): 306-316] DOI: 10.7522/j.issn.1000-0534.2021.00101
[26] 穆岑, 石莹, 黄月如. 东北地区近60年气温变化规律探讨[J]. 测绘与空间地理信息, 2022, 45(3): 64-67. [MU Cen, SHI Ying, HUANG Yueru. Temperature variation in northeast China in the past 60 years [J]. Geomatics and Spatial Information Technology, 2022, 45(3): 64-67]
[27] KHANDELWAL S, GOYAL R, KAUL N, et al. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India [J]. The Egyptian Journal of Remote Sensing and Space Science, 2018, 21(1): 87-94. DOI: 10.1016/j.ejrs.2017.01.005
[28] AGUILAR-LOME J, ESPINOZA-VILLAR R, ESPINOZA J C, et al. Elevation-dependent warming of land surface temperatures in the Andes assessed using MODIS LST time series(2000–2017)[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 77: 119-128. DOI: 10.1016/j.jag.2018.12.013
[29] HE Juelin, ZHAO Wei, LI Ainong, et al. The impact of the terrain effect on land surface temperature variation based on Landsat-8 observations in mountainous areas [J]. International Journal of Remote Sensing, 2019, 40(5-6): 1808-1827. DOI: 10.1080/01431161.2018.1466082
[30] 施婷婷, 郑兴波, 张丽波, 等. 植被对土壤热扩散特征的影响——以长白山阔叶红松林为例[J]. 生态学报, 2015, 35(12): 3970-3978. [SHI Tingting, ZHENG Xingbo, ZHANG Libo, et al. The influence of vegetation on soil thermal properties: A case study of broadleaved Korean pine forest in Changbai Mountain [J]. Acta Ecologica Sinica, 2015, 35(12): 3970-3978] DOI: 10.5846/stxb201308172098
[31] 闫文辉, 赵晶. 兴安盟2016—2020年地表覆被和地表温度的相关性分析[J]. 环境影响评价, 2023, 45(1): 84-87+124. [YAN Wenhui, ZHAO Jing. The correlation analysis of fractional vegetation coverage and land surface temperature in Hinggan League from 2016 to 2020 [J]. Environmental Impact Assessment, 2023, 45(1): 84-87+124] DOI: 10.14068/j.ceia.2023.01.017
[32] 谢绮丽, 杨鑫, 郝利娜. 2001—2020年三江源区植被覆盖时空变化特征及其影响因素[J]. 水土保持通报, 2022, 42(5): 202-212. [XIE Qili, YANG Xin, HAO Lina. Spatio-temporal variation of vegetation cover and its driving factors in Three-River Headwaters Region during 2001—2020 [J]. Bulletin of Soil and Water Conservation, 2022, 42(5): 202-212] DOI: 10.13961/j.cnki.stbctb.20221017.001
[33] ZOU Defu, ZHAO Lin, SHENG Yu, et al. A new map of permafrost distribution on the Tibetan Plateau [J]. The Cryosphere, 2017, 11(6): 2527-2542. DOI: 10.5194/tc-11-2527-2017
[34] JIN Huijun, HE Ruixia, CHENG Guodong, et al. Changes in frozen ground in the source area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts [J]. Environmental Research Letters, 2009, 4(4): 045206. DOI: 10.1088/1748-9326/4/4/045206