[1]穆青翼,陈俊锋,段译斐,等.黄土-古土互层边坡稳定性分析[J].山地学报,2022,(6):943-952.[doi:10.16089/j.cnki.1008-2786.000725]
 MU Qingyi,CHEN Junfeng,DUAN Yifei,et al.Stability Analysis of Loess-Paleosol Interlayer Slope[J].Mountain Research,2022,(6):943-952.[doi:10.16089/j.cnki.1008-2786.000725]
点击复制

黄土-古土互层边坡稳定性分析()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第6期
页码:
943-952
栏目:
山地技术
出版日期:
2022-11-25

文章信息/Info

Title:
Stability Analysis of Loess-Paleosol Interlayer Slope
文章编号:
1008-2786-(2022)6-943-10
作者:
穆青翼1 陈俊锋1段译斐2张 珩2孙 清<sup>1*
(1. 西安交通大学 人居环境与建筑工程学院,西安 710049; 2. 国家电网陕西省电力公司西安供电公司,西安 710005)
Author(s):
MU Qingyi1 CHEN Junfeng1 DUAN Yifei2 ZHANG heng2 SUN Qing1*
(1.School of Human Settlement and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049,China; 2. State Grid Shaanxi Electric Power Company Xi 'an Power Supply Company, Xi'an 710005,China)
关键词:
黄土-古土互层边坡 持水特性 强度特性 稳定性分析 数值模拟
Keywords:
Loess-Paleosol Interlayer Slope water retention characteristic strength characteristics stability analysis numerical simulation
分类号:
TU43
DOI:
10.16089/j.cnki.1008-2786.000725
文献标志码:
A
摘要:
中国西北地区常见黄土-古土互层边坡发生失稳。黄土-古土互层边坡中因黄土和古土水-力学特性的差异,其失稳机理和单一黄土边坡不同。以往黄土地区滑坡研究多聚焦于单一黄土边坡,对于降雨诱发黄土-古土互层边坡失稳机理的研究较少,已有定量研究成果仍不全面。本文通过室内单元体试验对比研究了原状古土与原状黄土的水-力学特性,建立了黄土-古土互层边坡以及单一黄土边坡数值模型,利用室内单元体试验所测水-力学特性参数,对比研究了降雨条件下黄土-古土互层边坡以及单一黄土边坡的失稳机理。室内单元体试验结果表明:(1)饱和古土的内摩擦角比黄土小3%且两种土的黏聚力均为零,这是由于古土较黄土黏粒含量大5.3%且两种土均缺乏碳酸钙等胶结矿物;(2)由于孔隙结构的差异,非饱和黄土相比于古土具有较差的持水能力和较好的渗透性。数值模拟结果表明:(1)在降雨条件下黄土-古土互层边坡在古土层附近形成滞水并逐渐连通,显著降低边坡安全系数,上述滞水现象的产生主要归因于黄土与古土水力学特性的差异(持水和渗透特性);(2)相同降雨条件下黄土-古土互层边坡比单一黄土边坡更易发生失稳。研究成果揭示了降雨引起黄土-古土互层边坡失稳的机理,可为同类研究及西北黄土-古土互层边坡治理提供参考。
Abstract:
The instability mechanism of loess-paleosoil interbed slope is different from that of single loess slope due to the huge difference in hydro-mechanical properties between loess and paleosoil. Previous studies on landslides in loess region mostly addressed a problem of loess slope, but few attention was paid to the mechanism of rainfall-induced instability of loess-paleosoil interlayer slope. In this paper, the hydro-mechanical properties of intact paleosol and loess samples were tested in laboratory; then it entered the obtained hydro-mechanical parameters into numerical models of both loess-paleosol interlayer slope and loess slope for comparison of their failure mechanisms. Laboratory tests found that the friction angle of saturated paleosol was 3%, smaller than that of loess, with the cohesions of the two soils at zero. This is quite a fact that the clay content of paleosol was 5.3%, larger than that of loess, and the two soils lacked cementing minerals such as calcium carbonate. Unsaturated loess had lower water retention capacity and higher permeability than unsaturated paleosol as a result of differentiation in pore structure. Numerical results suggested that perched water accumulated near paleosol layer, and it gradually connected under rainfall infiltration, which could significantly reduce the safety factor of the slopes. The mentioned water retention in interbed could be attributed to the differences in hydraulic parameters(water retention and permeability properties)between loess and paleosol. In addition, under the same rainfall condition, loess-paleosol interlayer slope was more prone to failure than loess slope. This research provides a new insight into the failure mechanism of loess-paleosoil interbed slope, and it make a reliable reference to research peers or landslide control.

参考文献/References:

[1] PYE K. The nature, origin and accumulation of loess [J]. Quaternary Science Reviews, 1995, 14(7-8): 653-667.
[2] HOU Kai, QIAN Hui, ZHANG Qiying, et al. Influence of Quaternary paleoclimate change on the permeability of the loess-paleosol sequence in the Loess Plateau, northern China [J]. Earth Surface Processes and Landforms, 2020, 45(4): 862-876. DOI: 10.1002/esp.4779
[3] 孙萍萍, 张茂省, 程秀娟, 等. 黄土高原地质灾害发生规律[J]. 山地学报, 2019,37(5):737-746. [SUN Pingping, ZHANG Maosheng, CHENG Xiujuan, et al. On the regularity of geological hazards on the Loess Plateau in China [J]. Mountain Research, 2019,37(5):737-746] DOI: 10.16089/j.cnki.1008-2786.000464
[4] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454. [HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454]
[5] 王念秦, 张倬元. 黄土滑坡灾害研究[M]. 兰州: 兰州大学出版社, 2005. [WANG Nianqin, ZHANG Zhuoyuan. Study on loess landslide disasters [M]. Lanzhou: Lanzhou University Press, 2005]
[6] 雷祥义. 黄土地质灾害的形成机理与防治对策[M]. 北京: 北京大学出版社, 2014. [LEI Xiangyi. The cause of formation, prevention and cure of geological disasters of loess [M]. Beijing: Peking University Press, 2014]
[7] 曹春山, 吴树仁, 潘懋, 等. 古土壤力学特性及其对黄土滑坡的意义[J]. 水文地质工程地质, 2016, 43(5): 127-132. [CAO Chunshan, WU Shuren, PAN Mao, et al. Mechanics characteristics of paleosol and its implication to loess landslide [J]. Hydrogeology and Engineering Geology, 2016, 43(5): 127-132] DOI: 10.16030/j.cnki.issn.1000-3665.2016.05.19
[8] WANG Wei, WANG Yu, SUN Qiming, et al. Spatial variation of saturated hydraulic conductivity of a loess slope in the south Jingyang plateau, China [J]. Engineering Geology, 2018, 236: 70-78. DOI: 10.1016/j.enggeo.2017.08.002
[9] 赵志强, 戴福初, 闵弘, 等. 原状黄土-古土壤中水分入渗过程研究[J]. 岩土力学, 2021, 42(9): 2611-2621. [ZHAO Zhiqiang, DAI Fuchu, MIN Hong, et al. Research on infiltration process in undisturbed loess-paleosol sequence [J]. Rock and Soil Mechanics, 2021, 42(9): 2611-2621] DOI: 10.16285/j.rsm.2021.0358
[10] GB/T50123-2019. 土工试验方法标准[S]. 北京: 中国计划出版社, 2019. [GB/T50123-2019. Standard for geotechnical testing method [S]. Beijing: China Planning Press, 2019]
[11] GIBSON R E, HENKEL D J. Influence of duration of tests at constant rate of strain on measured "drained" strength [J]. Géotechnique, 1954, 4(1): 6-15.
[12] TAN Chengxuan, SUN Weifeng, MENG Jing, et al. Research on loess-paleosol engineering geology features from the borehole cores of a typical section in Baoji area, Shaanxi province, China [J]. Environmental Earth Sciences, 2015, 74(5): 4469-4491. DOI: 10.1007/s12665-015-4468-6
[13] YUAN Weina, FAN Wen, JIANG Chengcheng, et al. Experimental study on the shear behavior of loess and paleosol based on ring shear tests [J]. Engineering Geology, 2019, 250: 11-20. DOI: 10.1016/j.enggeo.2019.01.007
[14] NG C W W, MU Q Y, ZHOU C. Effects of soil structure on the shear behavior of an unsaturated loess at different suctions and temperatures [J]. Canadian Geotechnical Journal, 2017, 54: 270-279. DOI: 10.1139/cgj-2016-0272
[15] SRIDHARAN A, ABRAHAM B M, JOSE B T. Improved technique for estimation of preconsolidation pressure [J]. Géotechnique, 1991, 41(2): 263-268.
[16] WHEELER S J, SHARMA R S, BUISSON M S R. Coupling of hydraulic hysteresis and stress-strain behavior in unsaturated soils [J]. Géotechnique, 2003, 53(1): 41-54.
[17] MUNOZ-CASTELBLANCO J, DELAGE P, PEREIRA J M, et al. Some aspects of the compression and collapse behaviour of an unsaturated natural loess [J]. Géotechnique Letters, 2011, 1(2): 17-22. DOI: 10.1680/geolett.11.00003
[18] NG C W W, PANG Y W. Experimental investigations of the soil-water characteristics of a volcanic soil [J]. Canadian Geotechnical Journal, 2000, 37(6): 1252-1264.
[19] VANAPALLI S K, FREDLUND D G, PUFAHL D E, et al. Model for the prediction of shear strength with respect to soil suction [J]. Canadian Geotechnical Journal, 1996, 33(3): 379-392.
[20] 庄建琦, 彭建兵, 李同录, 等. “9·17”灞桥灾难性黄土滑坡形成因素与运动模拟[J]. 工程地质学报, 2015, 23(4): 747-754. [ZHUANG Jianqi, PENG Jianbing, LI Tonglu, et al. Triggerred factores and motion simulation of “9·17” Baqiao catastrophic landslide [J]. Journal of Engineering Geology, 2015, 23(4): 747-754] DOI: 10.13544/j.cnki.jeg.2015.04.024
[21] 赵景波, 邵天杰, 牛俊杰. 西安白鹿塬黄土渗透性与含水条件[J]. 地理研究, 2009, 28(5): 1188-1196. [ZHAO Jingbo, SHAO Tianjie, NIU Junjie. Permeability and water-bearing conditions of loess in Bailu tableland in the eastern suburbs of Xi'an [J]. Gergraphical Research, 2009, 28(5): 1188-1196]
[22] FREDLUND D G, XING A Q, HUANG S Y. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve [J]. Canadian Geotechnical Journal, 1994, 31(4): 533-546.
[23] 詹良通, 李鹤, 陈云敏, 等. 东南沿海残积土地区降雨诱发型滑坡预报雨强—历时曲线的影响因素分析[J]. 岩土力学, 2012, 33(3): 872-886. [ZHAN Liangtong, LI He, CHEN Yunmin, et al. Parametric analyses of intensity-duration curve for predicting rain-induced landslides in residual soil slope in southeastern coastal areas of China [J]. Rock and Soil Mechanics, 2012, 33(3): 872-886] DOI: 10.16285/j.rsm.2012.03.016

备注/Memo

备注/Memo:
收稿日期(Received date):2022-09-30; 改回日期(Accepted date): 2022-12-23
基金项目(Foundation item): 国网陕西省电力公司西安供电公司科技项目(SGTYHT/20-JS-224); 国家自然科学基金(51978570)。[Science and Technology Project of Xi'an Power Supply Company of State Grid Shaanxi Electric Power Company(SGTYHT/20-JS-224); National Natural Science Foundation of China(51978570)]
作者简介(Biography): 穆青翼(1988-),男,河南人,副教授,博士,主要研究方向:非饱和土力学。[MU Qingyi(1988-), male, born in Henan province, associate professor, Ph.D., research on unsaturated soil mechanics.] E-mail: qingyimu@mail.xjtu.edu.cn
*通讯作者(Corresponding author): 孙清(1970-),男,山东人,教授,博士,主要研究方向:力学相关方向。[SUN Qing(1970-),male, born in Shandong province, professor, Ph.D., research on mechanical correlation direction.]E-mail: sunq@mail.xjtu.edu.cn
更新日期/Last Update: 2022-12-30